Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748820

ABSTRACT

The lack of selective and safe in vivo IRE1α tool molecules has limited the evaluation of IRE1α as a viable target to treat multiple myeloma. Focus on improving the physicochemical properties of a literature compound by decreasing lipophilicity, molecular weight, and basicity allowed the discovery of a novel series with a favorable in vitro safety profile and good oral exposure. These efforts culminated in the identification of a potent and selective in vivo tool compound, G-5758, that was well tolerated following multiday oral administration of doses up to 500 mg/kg. G-5758 demonstrated comparable pharmacodynamic effects to induced IRE1 knockdown as measured by XBP1s levels in a multiple myeloma model (KMS-11).

2.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38470227

ABSTRACT

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Subject(s)
Brain , Hydantoins , Humans , Oligodendroglia/metabolism , Drug Design , Hydantoins/metabolism
3.
J Med Chem ; 65(24): 16589-16621, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36455032

ABSTRACT

Small molecule inhibitors that target the phosphatidylinositol 3-kinase (PI3K) signaling pathway have received significant interest for the treatment of cancers. The class I isoform PI3Kα is most commonly associated with solid tumors via gene amplification or activating mutations. However, inhibitors demonstrating both PI3K isoform and mutant specificity have remained elusive. Herein, we describe the optimization and characterization of a series of benzoxazepin-oxazolidinone ATP-competitive inhibitors of PI3Kα which also induce the selective degradation of the mutant p110α protein, the catalytic subunit of PI3Kα. Structure-based design informed isoform-specific interactions within the binding site, leading to potent inhibitors with greater than 300-fold selectivity over the other Class I PI3K isoforms. Further optimization of pharmacokinetic properties led to excellent in vivo exposure and efficacy and the identification of clinical candidate GDC-0077 (inavolisib, 32), which is now under evaluation in a Phase III clinical trial as a treatment for patients with PIK3CA-mutant breast cancer.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Mutation
4.
ACS Med Chem Lett ; 11(12): 2389-2396, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335661

ABSTRACT

Amino-quinazoline BRaf kinase inhibitor 2 was identified from a library screen as a modest inhibitor of the unfolded protein response (UPR) regulating potential anticancer target IRE1α. A combination of crystallographic and conformational considerations were used to guide structure-based attenuation of BRaf activity and optimization of IRE1α potency. Quinazoline 6-position modifications were found to provide up to 100-fold improvement in IRE1α cellular potency but were ineffective at reducing BRaf activity. A salt bridge contact with Glu651 in IRE1α was then targeted to build in selectivity over BRaf which instead possesses a histidine in this position (His539). Torsional angle analysis revealed that the quinazoline hinge binder core was ill-suited to accommodate the required conformation to effectively reach Glu651, prompting a change to the thienopyrimidine hinge binder. Resulting analogues such as 25 demonstrated good IRE1α cellular potency and imparted more than 1000-fold decrease in BRaf activity.

5.
Nat Commun ; 11(1): 6387, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318494

ABSTRACT

Inositol-Requiring Enzyme 1 (IRE1) is an essential component of the Unfolded Protein Response. IRE1 spans the endoplasmic reticulum membrane, comprising a sensory lumenal domain, and tandem kinase and endoribonuclease (RNase) cytoplasmic domains. Excess unfolded proteins in the ER lumen induce dimerization and oligomerization of IRE1, triggering kinase trans-autophosphorylation and RNase activation. Known ATP-competitive small-molecule IRE1 kinase inhibitors either allosterically disrupt or stabilize the active dimeric unit, accordingly inhibiting or stimulating RNase activity. Previous allosteric RNase activators display poor selectivity and/or weak cellular activity. In this study, we describe a class of ATP-competitive RNase activators possessing high selectivity and strong cellular activity. This class of activators binds IRE1 in the kinase front pocket, leading to a distinct conformation of the activation loop. Our findings reveal exquisitely precise interdomain regulation within IRE1, advancing the mechanistic understanding of this important enzyme and its investigation as a potential small-molecule therapeutic target.


Subject(s)
Adenosine Triphosphate/metabolism , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Ribonucleases/metabolism , Adenosine Triphosphate/chemistry , Allosteric Site/drug effects , Crystallography, X-Ray , Endoplasmic Reticulum/metabolism , Endoribonucleases/chemistry , Gene Knockout Techniques , Humans , Ligands , Models, Molecular , Phosphorylation , Protein Conformation , Protein Folding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Ribonucleases/chemistry , Unfolded Protein Response
6.
mBio ; 11(5)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900806

ABSTRACT

Clinical development of antibiotics with novel mechanisms of action to kill pathogenic bacteria is challenging, in part, due to the inevitable emergence of resistance. A phenomenon of potential clinical importance that is broadly overlooked in preclinical development is heteroresistance, an often-unstable phenotype in which subpopulations of bacterial cells show decreased antibiotic susceptibility relative to the dominant population. Here, we describe a new globomycin analog, G0790, with potent activity against the Escherichia coli type II signal peptidase LspA and uncover two novel resistance mechanisms to G0790 in the clinical uropathogenic E. coli strain CFT073. Building on the previous finding that complete deletion of Lpp, the major Gram-negative outer membrane lipoprotein, leads to globomycin resistance, we also find that an unexpectedly modest decrease in Lpp levels mediated by insertion-based disruption of regulatory elements is sufficient to confer G0790 resistance and increase sensitivity to serum killing. In addition, we describe a heteroresistance phenotype mediated by genomic amplifications of lspA that result in increased LspA levels sufficient to overcome inhibition by G0790 in culture. These genomic amplifications are highly unstable and are lost after as few as two subcultures in the absence of G0790, which places amplification-containing resistant strains at high risk of being misclassified as susceptible by routine antimicrobial susceptibility testing. In summary, our study uncovers two vastly different mechanisms of resistance to LspA inhibitors in E. coli and emphasizes the importance of considering the potential impact of unstable and heterogenous phenotypes when developing antibiotics for clinical use.IMPORTANCE Despite increasing evidence suggesting that antibiotic heteroresistance can lead to treatment failure, the significance of this phenomena in the clinic is not well understood, because many clinical antibiotic susceptibility testing approaches lack the resolution needed to reliably classify heteroresistant strains. Here we present G0790, a new globomycin analog and potent inhibitor of the Escherichia coli type II signal peptidase LspA. We demonstrate that in addition to previously known mechanisms of resistance to LspA inhibitors, unstable genomic amplifications containing lspA can lead to modest yet biologically significant increases in LspA protein levels that confer a heteroresistance phenotype.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial/genetics , Lipoproteins/metabolism , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/enzymology , Animals , Aspartic Acid Endopeptidases/genetics , Bacterial Proteins/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Female , Humans , Mice , Mice, Inbred C57BL , Peptides/chemistry , Peptides/pharmacology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity
7.
Bioorg Med Chem Lett ; 30(20): 127419, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32768648

ABSTRACT

Discovery of novel classes of Gram-negative antibiotics with activity against multi-drug resistant infections is a critical unmet need. As an essential member of the lipoprotein biosynthetic pathway, lipoprotein signal peptidase II (LspA) is an attractive target for antibacterial drug discovery, with the natural product inhibitor globomycin offering a modestly-active starting point. Informed by structure-based design, the globomycin depsipeptide was optimized to improve activity against E. coli. Backbone modifications, together with adjustment of physicochemical properties, afforded potent compounds with good in vivo pharmacokinetic profiles. Optimized compounds such as 51 (E. coli MIC 3.1 µM) and 61 (E. coli MIC 0.78 µM) demonstrate broad spectrum activity against gram-negative pathogens and may provide opportunities for future antibiotic discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Peptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
8.
Proc Natl Acad Sci U S A ; 116(33): 16420-16429, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31371506

ABSTRACT

Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial. Genetic disruption of IRE1α or XBP1s, or pharmacologic IRE1α kinase inhibition, attenuated subcutaneous or orthometastatic growth of MM tumors in mice and augmented efficacy of two established frontline antimyeloma agents, bortezomib and lenalidomide. Mechanistically, IRE1α perturbation inhibited expression of key components of the endoplasmic reticulum-associated degradation machinery, as well as secretion of Ig light chains and of cytokines and chemokines known to promote MM growth. Selective IRE1α kinase inhibition reduced viability of CD138+ plasma cells while sparing CD138- cells derived from bone marrows of newly diagnosed or posttreatment-relapsed MM patients, in both US- and European Union-based cohorts. Effective IRE1α inhibition preserved glucose-induced insulin secretion by pancreatic microislets and viability of primary hepatocytes in vitro, as well as normal tissue homeostasis in mice. These results establish a strong rationale for developing kinase-directed inhibitors of IRE1α for MM therapy.


Subject(s)
Endoribonucleases/genetics , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Aged , Animals , Bortezomib/pharmacology , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lenalidomide/pharmacology , Male , Mice , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , Xenograft Model Antitumor Assays
9.
Org Lett ; 19(15): 4090-4093, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28726421

ABSTRACT

A direct and efficient introduction of a trifluoroethylamine motif into various heteroaromatic structures, using a readily available xanthate S-[1-(N-acetylamino)-2,2,2-trifluoroethyl]-O-ethyl dithiocarbonate (5), is reported. Medicinally relevant trifluoroethylaminated heteroarenes containing a wide range of functional groups were successfully synthesized under mild conditions. This amide isostere could be introduced into both electron-rich and -poor heteroarenes to give the desired products in one step. The beneficial effect of camphorsulfonic acid (CSA) was also demonstrated with electron-deficient heteroarenes.

10.
J Org Chem ; 81(18): 8617-24, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27529722

ABSTRACT

A general and efficient method for a metal-free one-pot synthesis of highly substituted fused imidazole-containing 5,5- and 5,6-fused bicyclic heterocycles is described. Starting from commercially available substrates and reagents, the reaction proceeds through two C-N bond formations and an oxidative dehydrogenation to form highly substituted products in good to excellent yield.

11.
Org Lett ; 15(24): 6250-3, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24266882

ABSTRACT

2-Fluoropyridinyl-6-oxy- precursors derived from phenyl vinyl sulfide react with radicals generated from xanthates via an addition-elimination process to furnish the corresponding vinyl sulfides in good yields. This convergent method is operationally simple and enables a straightforward synthesis of the difficult to access tetrasubstituted vinyl sulfides. Vinyl sulfides were used as more robust enol ether surrogates in highly stereoselective reactions with N-acylium cations leading to nitrogen-containing polycyclic structures.


Subject(s)
Allyl Compounds/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Sulfides/chemistry , Cyclization , Free Radicals/chemistry , Hydrocarbons, Fluorinated/chemistry , Molecular Conformation
12.
J Am Chem Soc ; 135(35): 12990-3, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23947740

ABSTRACT

The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.


Subject(s)
Hydrocarbons, Fluorinated/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Alkenes/chemistry , Catalysis , Hydrocarbons, Fluorinated/chemistry , Molecular Structure , Stereoisomerism
13.
J Am Chem Soc ; 133(40): 15954-7, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21923183

ABSTRACT

A recently discovered radical fragmentation of 2-fluoro-6-pyridinoxy derivatives allows a new highly stereoselective and convergent route to (E)-vinylsulfones from allylic alcohols. Reductive desulfonylation or nickel-catalyzed couplings furnish di- and trisubstituted (E)- and (Z)-alkenes.

14.
J Org Chem ; 76(12): 4921-9, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21534597

ABSTRACT

A highly demanding cross-metathesis (CM) reaction for the formation of the C24-C25 trisubstituted olefin of dolabelide C has been optimized. A difference in reactivity between the E and Z enone isomers in this reaction was uncovered, and the selection of the Z isomer of the starting enone was critical for the success of the cross-metathesis. Application to the synthesis of the C16-C30 fragment of dolabelide C is reported.


Subject(s)
Macrolides/chemical synthesis , Isomerism , Molecular Structure , Propanols/chemistry
15.
Org Lett ; 13(5): 1230-3, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21288011

ABSTRACT

Methylketone side chains can be used to direct the creation of one or more chiral centers, including quaternary centers, by exploiting the ability of the radical xanthate transfer process to mediate six-membered ring formation.

16.
Org Lett ; 13(4): 776-9, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21244049

ABSTRACT

Adducts from the radical addition of xanthates to ethyl vinyl sulfide readily undergo elimination of the xanthate group upon thermolysis to give vinylic and/or allylic sulfides, depending on the structure. In the case of α-xanthyl ketones, the adducts are converted into α-keto vinyl carbinols by rearrangement of the sulfoxides derived from the vinylic and allylic sulfides.

SELECTION OF CITATIONS
SEARCH DETAIL
...