Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Phys Chem Chem Phys ; 26(8): 6708-6716, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38321982

ABSTRACT

The coupled transport of charge and heat provide fundamental insights into the microscopic thermodynamics and kinetics of materials. We describe a sensitive ac differential resistance bridge that enables measurements of the temperature difference on two sides of a coin cell with a resolution of better than 10 µK. We use this temperature difference metrology to determine the ionic Peltier coefficients of symmetric Li-ion electrochemical cells as a function of Li salt concentration, solvent composition, electrode material, and temperature. The Peltier coefficients Π are negative, i.e., heat flows in the direction opposite to the drift of Li ions in the applied electric field, large, -Π > 30 kJ mol-1, and increase with increasing temperature at T > 300 K. The Peltier coefficient is approximately constant on time scales that span the characteristic time for mass diffusion across the thickness of the electrolyte, suggesting that heat of transport plays a minor role in comparison to the changes in partial molar entropy of Li at the interface between the electrode and electrolyte. Our work demonstrates a new platform for studying the non-equilibrium thermodynamics of electrochemical cells and provides a window into the transport properties of electrochemical materials through measurements of temperature differences and heat currents that complement traditional measurements of voltages and charge currents.

2.
Adv Mater ; 36(15): e2308720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38189549

ABSTRACT

Template-directed self-assembly of solidifying eutectics results in emergence of unique microstructures due to diffusion constraints and thermal gradients imposed by the template. Here, the importance of selecting the template material based on its conductivity to control heat transfer between the template and the solidifying eutectic, and thus the thermal gradients near the solidification front, is demonstrated. Simulations elucidate the relationship between the thermal properties of the eutectic and template and the resultant microstructure. The overarching finding is that templates with low thermal conductivities are generally advantageous for forming highly organized microstructures. When electrochemically porosified silicon pillars (thermal conductivity < 0.3 Wm-1K-1) are used as the template into which an AgCl-KCl eutectic is solidified, 99% of the unit cells in the solidified structure exhibit the same pattern. In contrast, when higher thermal conductivity crystalline silicon pillars (≈100 Wm-1K-1) are utilized, the expected pattern is only present in 50% of the unit cells. The thermally engineered template results in mesostructures with tunable optical properties and reflectances nearly identical to the simulated reflectances of perfect structures, indicating highly ordered patterns are formed over large areas. This work highlights the importance of controlling heat flows in template-directed self-assembly of eutectics.

3.
Adv Mater ; 36(11): e2309662, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087908

ABSTRACT

Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.

4.
ACS Photonics ; 10(9): 3008-3019, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743940

ABSTRACT

Multiphoton lithography inside a mesoporous host can create optical components with continuously tunable refractive indices in three-dimensional (3D) space. However, the process is very sensitive at exposure doses near the photoresist threshold, leading previous work to reliably achieve only a fraction of the available refractive index range for a given material system. Here, we present a method for greatly enhancing the uniformity of the subsurface micro-optics, increasing the reliable index range from 0.12 (in prior work) to 0.37 and decreasing the standard deviation (SD) at threshold from 0.13 to 0.0021. Three modifications to the previous method enable higher uniformity in all three spatial dimensions: (1) calibrating the planar write field of mirror galvanometers using a spatially varying optical transmission function which corrects for large-scale optical aberrations; (2) periodically relocating the piezoelectrically driven stage, termed piezo-galvo dithering, to reduce small-scale errors in writing; and (3) enforcing a constant time between each lateral cross section to reduce variation across all writing depths. With this new method, accurate fabrication of optics of any index between n = 1.20 and 1.57 (SD < 0.012 across the full range) was achieved inside a volume of porous silica. We demonstrate the importance of this increased accuracy and precision by fabricating and characterizing calibrated two-dimensional (2D) line gratings and flat gradient index lenses with significantly better performance than the corresponding control devices. As a visual representation, the University of Illinois logo made with 2D line gratings shows significant improvement in its color uniformity across its width.

5.
ACS Macro Lett ; 12(7): 901-907, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37358349

ABSTRACT

The diffusion of two aromatic dyes with nearly identical sizes was measured in ethylene vitrimers with precise linker lengths and borate ester cross-links using fluorescence recovery after photobleaching (FRAP). One dye possessed a reactive hydroxyl group, while the second was inert. The reaction of the hydroxyl group with the network is slow relative to the hopping times of the dye, resulting in a large slowdown by a factor of 50 for a reactive probe molecule. A kinetic model was fit to the fluorescence intensity data to determine rate constants for the reversible reaction of the dye from the network, which confirms the role of slow reaction kinetics. A second network cross-linker was also investigated with a substituted boronic ester showing ∼10,000 times faster exchange kinetics. In this system, the two dyes show the same diffusion coefficient, as the reaction is no longer the rate-limiting step. The role of dense meshes on small and large dyes is also discussed in the context of the existing theories. These results highlight the potential of dynamic networks to control penetrant transport through synergistic effects of the mesh size, dynamic bond kinetics, and penetrant-network interactions.

6.
Nat Commun ; 14(1): 3119, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37253761

ABSTRACT

Compact visible wavelength achromats are essential for miniaturized and lightweight optics. However, fabrication of such achromats has proved to be exceptionally challenging. Here, using subsurface 3D printing inside mesoporous hosts we densely integrate aligned refractive and diffractive elements, forming thin high performance hybrid achromatic imaging micro-optics. Focusing efficiencies of 51-70% are achieved for 15µm thick, 90µm diameter, 0.3 numerical aperture microlenses. Chromatic focal length errors of less than 3% allow these microlenses to form high-quality images under broadband illumination (400-700 nm). Numerical apertures upwards of 0.47 are also achieved at the cost of some focusing efficiency, demonstrating the flexibility of this approach. Furthermore, larger area images are reconstructed from an array of hybrid achromatic microlenses, laying the groundwork for achromatic light-field imagers and displays. The presented approach precisely combines optical components within 3D space to achieve thin lens systems with high focusing efficiencies, high numerical apertures, and low chromatic focusing errors, providing a pathway towards achromatic micro-optical systems.

7.
Nanophotonics ; 12(8): 1397-1404, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37114093

ABSTRACT

We present an electrically switchable, compact metasurface device based on the metallic polymer PEDOT:PSS in combination with a gel polymer electrolyte. Applying square-wave voltages, we can reversibly switch the PEDOT:PSS from dielectric to metallic. Using this concept, we demonstrate a compact, standalone, and CMOS compatible metadevice. It allows for electrically controlled ON and OFF switching of plasmonic resonances in the 2-3 µm wavelength range, as well as electrically controlled beam switching at angles up to 10°. Furthermore, switching frequencies of up to 10 Hz, with oxidation times as fast as 42 ms and reduction times of 57 ms, are demonstrated. Our work provides the basis towards solid state switchable metasurfaces, ultimately leading to submicrometer-pixel spatial light modulators and hence switchable holographic devices.

8.
ACS Macro Lett ; 12(1): 86-92, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36595317

ABSTRACT

There is growing interest in polymers with high ionic conductivity for applications including batteries, fuel cells, and separation membranes. However, measuring ion diffusion in polymers can be challenging, requiring complex procedures and instrumentation. Here, a simple strategy to study ion diffusion in polymers is presented that utilizes ion-chromic spiropyan as an indicator to measure the diffusion of LiTFSI, KTFSI, and NaTFSI within poly(ethylene oxide)-based polymer networks. These systems are selected, as these are common ions and polymers used in energy storage applications, however, the approach described is not specific to materials for energy storage. Specifically, to enabling the study of ion diffusion, these salts cause the spiropyran to undergo an isomerization reaction, which results in a significant color change. This colorimetric response enables the determination of the diffusion coefficients of these ions within films of these polymers simply by optically tracking the spatial-temporal evolution of the isomerization product within the film and fitting the data to the relevant diffusion equations. The simplicity of the method makes it amenable to the study of ion diffusion in polymers under a range of conditions, including various temperatures and under macroscopic deformation.


Subject(s)
Polymers , Salts , Ions , Temperature , Diffusion
9.
Nat Mater ; 22(1): 92-99, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280702

ABSTRACT

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

10.
Langmuir ; 38(37): 11160-11170, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36053575

ABSTRACT

Aqueous polymer colloids known as latexes are widely used in coating applications. Multicomponent latexes comprised of two incompatible polymeric species organized into a core-shell particle morphology are a promising system for self-stratifying coatings that spontaneously partition into multiple layers, thereby yielding complex structured coatings requiring only a single application step. Developing new materials for self-stratifying coatings requires a clear understanding of the thermodynamic and kinetic properties governing phase separation and polymeric species transport. In this work, we study phase separation and self-stratification in polymer films based on multicomponent acrylic (shell) and acrylic-silicone (core) latex particles. Our results show that the molecular weight of the shell polymer and heat aging conditions of the film critically determine the underlying transport phenomena, which ultimately controls phase separation in the film. Unentangled shell polymers result in efficient phase separation within hours with heat aging at reasonable temperatures, whereas entangled shell polymers effectively inhibit phase separation even under extensive heat aging conditions over a period of months due to kinetic limitations. Transmission electron microscopy is used to track morphological changes as a function of thermal aging. Interestingly, our results show that the rheological properties of the latex films are highly sensitive to morphology, and linear shear rheology is used to understand morphological changes. Overall, these results highlight the importance of bulk rheology as a simple and effective tool for understanding changes in morphology in multicomponent latex films.

11.
Angew Chem Int Ed Engl ; 61(41): e202206061, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36031709

ABSTRACT

Materials which selectively transport molecules offer powerful opportunities for concentrating and separating chemical agents. Here, utilizing static and dynamic chemical gradients, transport of molecules within swollen crosslinked polymers is demonstrated. Using an ≈200 µm static hydroxyl to hexyl gradient, the neutral ambipolar nerve agent surrogate diethyl (cyanomethyl)phosphonate (DECP) is directionally transported and concentrated 60-fold within 4 hours. To accelerate transport kinetics, a dynamic gradient (a "travelling wave") is utilized. Here, the non-polar dye pyrene was transported. The dynamic gradient is generated by an ion exchange process triggered by the localized introduction of an aqueous NaCl solution, which converts the gel from hydrophobic to hydrophilic. As the hydrophilic region expands, associated water enters the gel, and pyrene is pushed ahead of the expansion front. The dynamic gradient provides about 10-fold faster transport kinetics than the static gradient.

12.
ACS Nano ; 16(3): 4251-4262, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35275638

ABSTRACT

Creating thin (<100 nm) hydrophobic coatings that are durable in wet conditions remains challenging. Although the dropwise condensation of steam on thin hydrophobic coatings can enhance condensation heat transfer by 1000%, these coatings easily delaminate. Designing interfaces with high adhesion while maintaining a nanoscale coating thickness is key to overcoming this challenge. In nature, cell membranes face this same challenge where nanometer-thick lipid bilayers achieve high adhesion in wet environments to maintain integrity. Nature ensures this adhesion by forming a lipid interface having two nonpolar surfaces, demonstrating high physicochemical resistance to biofluids attempting to open the interface. Here, developing an artificial lipid-like interface that utilizes fluorine-carbon molecular chains can achieve durable nanometric hydrophobic coatings. The application of our approach to create a superhydrophobic material shows high stability during jumping-droplet-enhanced condensation as quantified from a continual one-year steam condensation experiment. The jumping-droplet condensation enhanced condensation heat transfer coefficient up to 400% on tube samples when compared to filmwise condensation on bare copper. Our bioinspired materials design principle can be followed to develop many durable hydrophobic surfaces using alternate substrate-coating pairs, providing stable hydrophobicity or superhydrophobicity to a plethora of applications.


Subject(s)
Adhesives , Steam , Hydrophobic and Hydrophilic Interactions , Lipids , Wettability
13.
Adv Mater ; 34(16): e2108391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35233865

ABSTRACT

Recent progress in soft material chemistry and enabling methods of 3D and 4D fabrication-emerging programmable material designs and associated assembly methods for the construction of complex functional structures-is highlighted. The underlying advances in this science allow the creation of soft material architectures with properties and shapes that programmably vary with time. The ability to control composition from the molecular to the macroscale is highlighted-most notably through examples that focus on biomimetic and biologically compliant soft materials. Such advances, when coupled with the ability to program material structure and properties across multiple scales via microfabrication, 3D printing, or other assembly techniques, give rise to responsive (4D) architectures. The challenges and prospects for progress in this emerging field in terms of its capacities for integrating chemistry, form, and function are described in the context of exemplary soft material systems demonstrating important but heretofore difficult-to-realize biomimetic and biologically compliant behaviors.


Subject(s)
Biomimetics , Printing, Three-Dimensional
14.
Adv Sci (Weinh) ; 9(3): e2103517, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34845856

ABSTRACT

The shuttling behavior and slow conversion kinetics of the intermediate lithium polysulfides are the severe obstacles for the application of lithium-sulfur (Li-S) batteries over a wide temperature range. Here, an engineered lamellar yolk-shell structure of In2 O3 @void@carbon for the Li-S battery cathode is developed for the first time to construct a powerful barrier that effectively inhibits the shuttling of polysulfides. On the basis of the unique nanochannel-containing morphology, the continuous kinetic transformation of sulfur and polysulfides is confined in a stable framework, which is demonstrated by using X-ray nanotomography. The constructed Li-S battery exhibits a high cycling capability over 1000 cycles at 1.0 C with a capacity decay rate as low as 0.038% per cycle, good rate performance, and temperature tolerance at -10, 25, and 50 °C. A nondestructive in situ monitoring method of the interfacial reaction resistance in different cycling stages is proposed, which provides a new analysis perspective for the development of emerging electrochemical energy-storage systems.

15.
Adv Mater ; 33(35): e2101760, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278621

ABSTRACT

Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.

16.
Small ; 17(28): e2101693, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34117830

ABSTRACT

Thermal management in Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the battery materials is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (SEs) over the temperature range 150 < T < 350 K. Studies include the oxides Li1.5 Al0.5 Ge1.5 (PO4 )3 and Li6.4 La3 Zr1.4 Ta0.6 O12 , sulfides Li2 S-P2 S5 , Li6 PS5 Cl, and Na3 PS4 , and halides Li3 InCl6 and Li3 YCl6 . Thermal conductivities of sulfide and halide SEs are in the range 0.45-0.70 W m-1  K-1 ; thermal conductivities of Li6.4 La3 Zr1.4 Ta0.6 O12 and Li1.5 Al0.5 Ge1.5 (PO4 )3 are 1.4 and 2.2 W m-1  K-1 , respectively. For most of the SEs studied in this work, the thermal conductivity increases with increasing temperature, that is, the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating that the phonon mean-free-paths in these SEs are close to an atomic spacing. The low, glass-like thermal conductivity of the SEs investigated is attributed to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.

17.
J Colloid Interface Sci ; 601: 886-898, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34186277

ABSTRACT

We present an integrated experimental and theoretical study of the dynamics and rheology of self-crosslinked, slightly charged, temperature responsive soft poly(N-isopropylacrylamide) (pNIPAM) microgels over a wide range of concentration and temperature spanning the sharp change in particle size and intermolecular interactions across the lower critical solution temperature (LCST). Dramatic, non-monotonic changes in viscoelasticity are observed as a function of temperature, with distinct concentration dependence in the dense fluid, glassy, and soft-jammed regimes. Motivated by our experimental observations, we formulate a minimalistic model for the size dependence of a single microgel particle and the change of the interparticle interaction from purely repulsive to attractive upon heating. Using microscopic equilibrium and time-dependent statistical mechanical theories, theoretical predictions are quantitatively compared with experimental measurements of the shear modulus. Good agreement is found for the nonmonotonic temperature behavior that originates as a consequence of the competition between reduced microgel packing fraction and increasing interparticle attractions. Testable predictions are made for nonlinear rheological properties such as the yield stress and strain. To our knowledge, this is the first attempt to quantitatively understand in a unified manner the viscoelasticity of dense, temperature-responsive microgel suspensions spanning a wide range of temperatures and concentrations.


Subject(s)
Microgels , Particle Size , Polymers , Rheology , Suspensions
18.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34039708

ABSTRACT

We introduce an intermediate-temperature (350 °C) dry molten sodium hydroxide-mediated binder-free electrodeposition process to grow the previously electrochemically inaccessible air- and moisture-sensitive layered sodium transition metal oxides, NaxMO2 (M = Co, Mn, Ni, Fe), in both thin and thick film form, compounds which are conventionally synthesized in powder form by solid-state reactions at temperatures ≥700 °C. As a key motivation for this work, several of these oxides are of interest as cathode materials for emerging sodium-ion-based electrochemical energy storage systems. Despite the low synthesis temperature and short reaction times, our electrodeposited oxides retain the key structural and electrochemical performance observed in high-temperature bulk synthesized materials. We demonstrate that tens of micrometers thick >75% dense NaxCoO2 and NaxMnO2 can be deposited in under 1 h. When used as cathodes for sodium-ion batteries, these materials exhibit near theoretical gravimetric capacities, chemical diffusion coefficients of Na+ ions (∼10-12 cm2⋅s-1), and high reversible areal capacities in the range ∼0.25 to 0.76 mA⋅h⋅cm-2, values significantly higher than those reported for binder-free sodium cathodes deposited by other techniques. The method described here resolves longstanding intrinsic challenges associated with traditional aqueous solution-based electrodeposition of ceramic oxides and opens a general solution chemistry approach for electrochemical processing of hitherto unexplored air- and moisture-sensitive high valent multinary structures with extended frameworks.

19.
Nat Mater ; 20(10): 1392-1400, 2021 10.
Article in English | MEDLINE | ID: mdl-34017118

ABSTRACT

Interfaces have crucial, but still poorly understood, roles in the performance of secondary solid-state batteries. Here, using crystallographically oriented and highly faceted thick cathodes, we directly assess the impact of cathode crystallography and morphology on the long-term performance of solid-state batteries. The controlled interface crystallography, area and microstructure of these cathodes enables an understanding of interface instabilities unknown (hidden) in conventional thin-film and composite solid-state electrodes. A generic and direct correlation between cell performance and interface stability is revealed for a variety of both lithium- and sodium-based cathodes and solid electrolytes. Our findings highlight that minimizing interfacial area, rather than its expansion as is the case in conventional composite cathodes, is key to both understanding the nature of interface instabilities and improving cell performance. Our findings also point to the use of dense and thick cathodes as a way of increasing the energy density and stability of solid-state batteries.

20.
ACS Nano ; 15(6): 10393-10405, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34008953

ABSTRACT

A general and quantitative method to characterize molecular transport in polymers with good temporal and high spatial resolution, in complex environments, is an important need of the pharmaceutical, textile, and food and beverage packaging industries, and of general interest to the polymer science community. Here we show how the amplified infrared (IR) absorbance sensitivity provided by plasmonic nanoantenna-based surface enhanced infrared absorption (SEIRA) provides such a method. SEIRA enhances infrared (IR) absorbances primarily within 50 nm of the nanoantennas, enabling localized quantitative detection of even trace quantities of analytes and diffusion measurements in even thin polymer films. Relative to a commercial attenuated total internal reflection (ATR) system, the limit of detection is enhanced at least 13-fold, and as is important for measuring diffusion, the detection volume is about 15 times thinner. Via this approach, the diffusion coefficient and solubility of specific molecules, including l-ascorbic acid (vitamin C), ethanol, various sugars, and water, in both simple and complex mixtures (e.g., beer and a cola soda), were determined in poly(methyl methacrylate), high density polyethylene (HDPE)-based, and polypropylene-based polyolefin films as thin as 250 nm.


Subject(s)
Polymers , Water , Diffusion , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...