Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Commun ; 15(1): 3764, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704361

ABSTRACT

Crohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.


Subject(s)
Crohn Disease , Diet , Gastrointestinal Microbiome , Rural Population , Urban Population , Crohn Disease/microbiology , Crohn Disease/genetics , Humans , Male , Female , China/epidemiology , Adult , Israel/epidemiology , Metabolomics , Cohort Studies , Middle Aged , Feces/microbiology , Ileum/microbiology , Ileum/metabolism , Transcriptome , Young Adult
2.
Gut Microbes ; 16(1): 2309682, 2024.
Article in English | MEDLINE | ID: mdl-38324278

ABSTRACT

Spinal cord injury (SCI) is a devastating event that significantly changes daily function and quality of life and is linked to bowel and bladder dysfunction and frequent antibiotic treatment. We aimed to study the composition of the gut microbiome in individuals with SCI during the initial sub-acute rehabilitation process and during the chronic phase of the injury. This study included 100 fecal samples from 63 participants (Median age 40 years, 94% males): 13 cases with SCI in the sub-acute phase with 50 longitudinal samples, 18 cases with chronic SCI, and 32 age and gender-matched controls. We show, using complementary methods, that the time from the injury was a dominant factor linked with gut microbiome composition. Surprisingly, we demonstrated a lack of gut microbial recovery during rehabilitation during the sub-acute phase, with further deviation from the non-SCI control group in the chronic ambulatory SCI group. To generalize the results, we were able to show significant similarity of the signal when comparing to a previous cohort with SCI, to subjects from the American Gut Project who reported low physical activity, and to subjects from another population-based cohort who reported less normal stool consistency. Restoration of the microbiome composition may be another desirable measure for SCI recovery in the future, but further research is needed to test whether such restoration is associated with improved neurological outcomes and quality of life.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Spinal Cord Injuries , Male , Humans , Adult , Female , Quality of Life , Exercise
3.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352573

ABSTRACT

Background and Aims: We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA). Methods: Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage:HIO co-cultures were exposed to lipopolysaccharide (LPS) with and without ETYA pre-treatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan Low Density Array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO pro-fibrotic gene expression and collagen content. Results: iPSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome secreted products, and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and pro-fibrotic gene expression pathways in LPS stimulated macrophages. Co-culture of LPS-primed macrophages with HIO led to up-regulation of fibroblast activation genes including ACTA2 and COL1A1 , and an increase in HIO collagen content. ETYA pre-treatment prevented pro-fibrotic effects of LPS-primed macrophages. Conclusions: ETYA inhibits pro-fibrotic effects of LPS-primed macrophages upon co-cultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.

4.
Sci Rep ; 13(1): 20513, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993670

ABSTRACT

Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.


Subject(s)
Crohn Disease , RNA, Long Noncoding , Adult , Humans , Child , Caco-2 Cells , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Crohn Disease/genetics , Actins/genetics , Cell Proliferation/genetics , Ileum/metabolism , Cell Line, Tumor
5.
Clin Transl Gastroenterol ; 14(12): e00635, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37655708

ABSTRACT

INTRODUCTION: Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin (IL)-12 and IL-23, is used for Crohn's disease (CD), and the documented clinical remission rate after 1 year was observed in approximately 50% of patients. We aimed to identify predictors for a clinical response using peripheral blood obtained from patients with CD just before ustekinumab treatment initiation. METHODS: RNA extraction from peripheral blood mononuclear cells was followed by mRNA paired-end sequencing. Differential gene expression was performed using DESeq2. RESULTS: We processed samples from 36 adults with CD (13 men, 36%) obtained at baseline before starting ustekinumab treatment. Twenty-two of 36 (61%) were defined as responders and 14/36 (39%) as nonresponders after 1 year based on Physician Global Assessment. Differential gene expression between responders (n = 22) and nonresponders (n = 14) did not show a gene expression signature that passed false discovery rate (FDR) correction. However, the analyses identified 68 genes, including CXCL1/2/3, which were induced in nonresponders vs responders with P < 0.05 and fold change above 1.5. Functional annotation enrichments of these 68 genes using ToppGene indicated enrichment for cytokine activity (FDR = 1.98E-05), CXCR chemokine receptor binding (FDR = 2.11E-05), IL-10 signaling (FDR = 5.03E-07), genes encoding secreted soluble factors (FDR = 1.73E-05), and myeloid dendritic cells (FDR = 1.80E-08). DISCUSSION: No substantial differences were found in peripheral blood mononuclear cell transcriptomics between responders and nonresponders. However, among the nonresponders, we noted an increased inflammatory response enriched for pathways linked with cytokine activity and chemokine receptor binding and innate myeloid signature. A larger cohort is required to validate and further explore these findings.


Subject(s)
Crohn Disease , Ustekinumab , Male , Adult , Humans , Ustekinumab/therapeutic use , Ustekinumab/pharmacology , Crohn Disease/diagnosis , Crohn Disease/drug therapy , Crohn Disease/genetics , Leukocytes, Mononuclear , Interleukin-12/therapeutic use , Gene Expression Profiling , Receptors, Chemokine/therapeutic use
6.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37261910

ABSTRACT

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , RNA, Long Noncoding , Animals , Mice , Colitis, Ulcerative/genetics , Crohn Disease/genetics , RNA, Long Noncoding/genetics , Celiac Disease/genetics , Transcriptome , Prospective Studies
7.
Sci Rep ; 13(1): 2007, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737654

ABSTRACT

We aimed to determine microbial signature linked with lung cancer (LC) diagnosis and to define taxa linked with durable clinical benefit (DCB) of advanced LC patients. Stool samples for microbial 16S amplicon sequencing and clinical data were collected from 75 LC patients (50 of which were treated with checkpoint inhibitors) and 31 matched healthy volunteers. We compared LC to healthy controls and patients with DCB to those without. LC patients had lower α-diversity and higher between-subject diversity. Random Forests model to differentiate LC cases from controls ROC-AUC was 0.74. Clostridiales, Lachnospiraceae, and Faecalibacterium prausnitzii taxa abundance was decreased in LC compared to controls. High Akkermansia muciniphila correlated with DCB (HR 4.26, 95% CI 1.98-9.16), not only for the immunotherapy-treated patients. In addition, high Alistipes onderdonkii (HR 3.08, 95% CI 1.34-7.06) and high Ruminococcus (HR 7.76, 95% CI 3.23-18.65) correlated with DCB.Our results support the importance of gut microbiome in LC. We have validated the apparent predictive value of Akkermansia muciniphila, and highlighted Alistipes onderdonkii and Ruminococcus taxa correlation with DCB. Upon additional validations those can be used as biomarkers or as targets for future therapeutic interventions.


Subject(s)
Gastrointestinal Microbiome , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Bacteroidetes , Verrucomicrobia , Clostridiales
8.
J Crohns Colitis ; 17(6): 960-971, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-36655602

ABSTRACT

BACKGROUND AND AIMS: Widespread dysregulation of long non-coding RNAs [lncRNAs] including a reduction in GATA6-AS1 was noted in inflammatory bowel disease [IBD]. We previously reported a prominent inhibition of epithelial mitochondrial functions in ulcerative colitis [UC]. However, the connection between reduction of GATA6-AS1 expression and attenuated epithelial mitochondrial functions was not defined. METHODS: Mucosal transcriptomics was used to conform GATA6-AS1 reduction in several treatment-naïve independent human cohorts [n=673]. RNA pull-down followed by mass spectrometry was used to determine the GATA6-AS1 interactome. Metabolomics and mitochondrial respiration following GATA6-AS1 silencing in Caco-2 cells were used to elaborate on GATA6-AS1 functions. RESULTS: GATA6-AS1 showed predominant expression in gut epithelia using single cell datasets. GATA6-AS1 levels were reduced in Crohn's disease [CD] ileum and UC rectum in independent cohorts. Reduced GATA6-AS1 lncRNA was further linked to a more severe UC form, and to a less favourable UC course. The GATA6-AS1 interactome showed robust enrichment for mitochondrial proteins, and included TGM2, an autoantigen in coeliac disease that is induced in UC, CD and coeliac disease, in contrast to GATA6-AS1 reduction in these cohorts. GATA6-AS1 silencing resulted in induction of TGM2, and this was coupled with a reduction in mitochondrial membrane potential and mitochondrial respiration, as well as in a reduction of metabolites linked to aerobic respiration relevant to mucosal inflammation. TGM2 knockdown in GATA6-AS1-deficient cells rescued mitochondrial respiration. CONCLUSIONS: GATA6-AS1 levels are reduced in UC, CD and coeliac disease, and in more severe UC forms. We highlight GATA6-AS1 as a target regulating epithelial mitochondrial functions, potentially through controlling TGM2 levels.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Caco-2 Cells , Intestinal Mucosa/metabolism , Crohn Disease/metabolism , Rectum , Inflammation/metabolism , Mitochondria/metabolism , GATA6 Transcription Factor/metabolism
9.
Inflamm Bowel Dis ; 28(7): 988-1003, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35259271

ABSTRACT

BACKGROUND: Perturbagen analysis of Crohn's disease (CD) ileal gene expression data identified small molecules including eicosatetraynoic acid (ETYA), which may exert an antifibrotic effect. We developed a patient-specific human intestinal organoid (HIO) model system to test small molecule regulation of mitochondrial and wound-healing functions implicated in stricturing behavior. METHODS: HIOs were made from CD induced pluripotent stem cells with and without a loss-of-function haplotype in the DUOX2 gene implicated in ileal homeostasis and characterized under basal conditions and following exposure to butyrate and ETYA using RNA sequencing, flow cytometry, and immunofluorescent and polarized light microscopy. Mitochondrial activity was measured using high-resolution respirometry and tissue stiffness using atomic force microscopy. RESULTS: HIOs expressed core mitochondrial and extracellular matrix (ECM) genes and enriched biologic functions implicated in CD ileal strictures; ECM gene expression was suppressed by both butyrate and ETYA, with butyrate also suppressing genes regulating epithelial proliferation. Consistent with this, butyrate, but not ETYA, exerted a profound effect on HIO epithelial mitochondrial function, reactive oxygen species production, and cellular abundance. Butyrate and ETYA suppressed HIO expression of alpha smooth muscle actin expressed by myofibroblasts, type I collagen, and collagen protein abundance. HIOs exhibited tissue stiffness comparable to normal human ileum; this was reduced by chronic ETYA exposure in HIOs carrying the DUOX2 loss-of-function haplotype. CONCLUSIONS: ETYA regulates ECM genes implicated in strictures and suppresses collagen content and tissue stiffness in an HIO model. HIOs provide a platform to test personalized therapeutics, including small molecules prioritized by perturbagen analysis.


A subset of pediatric Crohn's disease patients develop intestinal strictures requiring surgery. The microbial metabolite butyrate and eicosatetraynoic acid regulate pathways implicated in stricture formation in a human intestinal organoid model system, which may be used to test new therapies.


Subject(s)
Crohn Disease , Butyrates/metabolism , Butyrates/pharmacology , Collagen/metabolism , Constriction, Pathologic/metabolism , Crohn Disease/genetics , Dual Oxidases/metabolism , Extracellular Matrix/metabolism , Humans , Intestinal Mucosa/metabolism , Mitochondria/metabolism , Organoids/metabolism
10.
Genome Biol ; 23(1): 61, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197084

ABSTRACT

BACKGROUND: Gut microbial alteration is implicated in inflammatory bowel disease but is noted in other diseases. Systematic comparison to define similarities and specificities is hampered since most studies focus on a single disease. RESULTS: We develop a pipeline to compare between disease cohorts starting from the raw V4 16S amplicon sequence variants. Including 12,838 subjects, from 59 disease cohorts, we demonstrate a predominant shared signature across diseases, indicating a common bacterial response to different diseases. We show that classifiers trained on one disease cohort predict relatively well other diseases due to this shared signal, and hence, caution should be taken when using such classifiers in real-world scenarios, where diseases are intermixed. Based on this common signature across a large array of diseases, we develop a universal dysbiosis index that successfully differentiates between cases and controls across various diseases and can be used for prioritizing fecal donors and samples with lower disease probability. Finally, we identify a set of IBD-specific bacteria, which can direct mechanistic studies and design of IBD-specific microbial interventions. CONCLUSIONS: A robust non-specific general response of the gut microbiome is detected in a large array of diseases. Disease classifiers may confuse between different diseases due to this shared microbial response. Our universal dysbiosis index can be used as a tool to prioritize fecal samples and donors. Finally, the IBD-specific taxa may indicate a more direct association to gut inflammation and disease pathogenesis, and those can be further used as biomarkers and as future targets for interventions.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Bacteria/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Dysbiosis/microbiology , Feces/microbiology , Humans , Inflammatory Bowel Diseases/microbiology
11.
NPJ Biofilms Microbiomes ; 8(1): 2, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017536

ABSTRACT

The human gut microbiome develops during the first years of life, followed by a relatively stable adult microbiome. Day care attendance is a drastic change that exposes children to a large group of peers in a diverse environment for prolonged periods, at this critical time of microbial development, and therefore has the potential to affect microbial composition. We characterize the effect of day care on the gut microbial development throughout a single school year in 61 children from 4 different day care facilities, and in additional 24 age-matched home care children (n = 268 samples, median age of entering the study was 12 months). We show that day care attendance is a significant and impactful factor in shaping the microbial composition of the growing child, the specific daycare facility and class influence the gut microbiome, and each child becomes more similar to others in their day care. Furthermore, in comparison to home care children, day care children have a different gut microbial composition, with enrichment of taxa more frequently observed in older populations. Our results provide evidence that daycare may be an external factor that contributes to gut microbiome maturation and make-up in early childhood.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Aged , Child , Child, Preschool , Day Care, Medical , Humans , Infant
12.
Sci Rep ; 11(1): 8922, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903709

ABSTRACT

The coronavirus disease 2019 (COVID-19) has rapidly spread around the world, impacting the lives of many individuals. Growing evidence suggests that the nasopharyngeal and respiratory tract microbiome are influenced by various health and disease conditions, including the presence and the severity of different viral disease. To evaluate the potential interactions between Severe Acute Respiratory Syndrome Corona 2 (SARS-CoV-2) and the nasopharyngeal microbiome. Microbial composition of nasopharyngeal swab samples submitted to the clinical microbiology lab for suspected SARS-CoV-2 infections was assessed using 16S amplicon sequencing. The study included a total of 55 nasopharyngeal samples from 33 subjects, with longitudinal sampling available for 12 out of the 33 subjects. 21 of the 33 subjects had at least one positive COVID-19 PCR results as determined by the clinical microbiology lab. Inter-personal variation was the strongest factor explaining > 75% of the microbial variation, irrespective of the SARS-CoV-2 status. No significant effect of SARS-CoV-2 on the nasopharyngeal microbial community was observed using multiple analysis methods. These results indicate that unlike some other viruses, for which an effect on the microbial composition was noted, SARS-CoV-2 does not have a strong effect on the nasopharynx microbial habitants.


Subject(s)
COVID-19/microbiology , Microbiota , Nasopharynx/microbiology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/virology , Female , Humans , Male , Microbiota/genetics , Middle Aged , RNA, Ribosomal, 16S/genetics
13.
J Crohns Colitis ; 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32770196

ABSTRACT

BACKGROUND AND AIMS: Ileal strictures are the major indication for resective surgery in Crohn's disease (CD). We aimed to define ileal gene programs present at diagnosis linked with future stricturing behavior during five year follow-up, and to identify potential small molecules to reverse these gene signatures. METHODS: Antimicrobial serologies and pre-treatment ileal gene expression were assessed in a representative subset of 249 CD patients within the RISK multicenter pediatric CD inception cohort study, including 113 that are unique to this report. These data were used to define genes associated with stricturing behavior and for model testing to predict stricturing behavior. A bioinformatics approach to define small molecules which may reverse the stricturing gene signature was applied. RESULTS: 19 of the 249 patients developed isolated B2 stricturing behavior during follow-up, while 218 remained B1 inflammatory. Using deeper RNA sequencing than in our prior report, we have now defined an inflammatory gene signature including an oncostatin M co-expression signature, tightly associated with extra-cellular matrix (ECM) gene expression in those who developed stricturing complications. We further computationally prioritize small molecules targeting macrophage and fibroblast activation and angiogenesis which may reverse the stricturing gene signature. A model containing ASCA and CBir1 serologies and a refined eight ECM gene set was significantly associated with stricturing development by year five after diagnosis (AUC (95th CI) = 0.82 (0.7-0.94)). CONCLUSION: An ileal gene program for macrophage and fibroblast activation is linked to stricturing complications in treatment naïve pediatric CD, and may inform novel small molecule therapeutic approaches.

14.
Nutrients ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941016

ABSTRACT

High fructose consumption is one of the hallmarks of Western diets and has been found to induce MeS symptoms in parallel to gut microbial dysbiosis. However, the causality between those two is still elusive. Here, we studied whether a significant modification of gut microbial composition by antibiotics can influence the fructose-induced metabolic changes. Male Sprague-Dawley (SD) rats were divided into four groups including controls, controls + antibiotics, high fructose diet (HFrD, 60% fructose), HFrD + antibiotics (n = 7-8 in each group) for a period of 8-weeks. The high fructose diet increased blood pressure (BP), triglyceride (TG), fatty liver and the expression of hepatic genes related to lipogenesis, and fructose transport and metabolism. In addition, fructose changed the microbial composition and increased acetic and butyric acids in fecal samples but not in the blood. Antibiotic treatment significantly reduced microbial diversity and modified the microbial composition in the samples. However, minimal or no effect was seen in the metabolic phenotypes. In conclusion, high fructose consumption (60%) induced metabolic changes and dysbiosis in rats. However, antibiotic treatment did not reverse the metabolic phenotype. Therefore, the metabolic changes are probably independent of a specific microbiome profile.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diet/adverse effects , Dysbiosis , Fructose/adverse effects , Gastrointestinal Microbiome/drug effects , Animals , Liver/drug effects , Male , Metabolic Syndrome , Rats , Rats, Sprague-Dawley
15.
Sci Rep ; 9(1): 16163, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700112

ABSTRACT

Celiac disease is provoked by gluten exposure, but the complete pathogenic process in the duodenum and the loss of tolerance to gluten is not well understood. We aimed to define the core celiac transcriptomic signature and pathologic pathways in pre-treatment formalin-fixed paraffin-embedded (FFPE) duodenum biopsies used for clinical diagnosis. We use mRNAseq to define pre-treatment diagnostic duodenum gene expression in 54 pediatric celiac patients and non-celiac controls, and we validate our key findings in two independent cohorts of 67 adults and pediatric participants that used fresh frozen biopsies. We further define similar and divergent genes and pathways in 177 small bowel Crohn disease patients and controls. We observe a marked suppression of mature epithelial metabolic functions in celiac patients, overlapping substantially with the Crohn disease signature. A marked adaptive immune response was noted for the up-regulated signature including interferon response, alpha-beta, and gamma-delta T-cells that overlapped to some extent with the Crohn disease signature. However, we also identified a celiac disease specific signature linked to increased cell proliferation, nuclear division, and cell cycle activity that was localized primarily to the epithelia as noted by CCNB1 and Ki67 staining. Lastly, we demonstrate the utility of the transcriptomic date to correctly classify disease or healthy states in the discovery and validation cohorts. Our data supplement recently published datasets providing insights into celiac pathogenesis using clinical pathology FFPE samples, and can stimulate new approaches to address this highly prevalent condition.


Subject(s)
Celiac Disease , Duodenum , Intestinal Mucosa , Transcriptome , Adolescent , Biopsy , Celiac Disease/diagnosis , Celiac Disease/metabolism , Celiac Disease/pathology , Child , Child, Preschool , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Cyclin B1/biosynthesis , Duodenum/metabolism , Duodenum/pathology , Female , Gene Expression Regulation , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ki-67 Antigen/biosynthesis , Male
16.
Lancet Gastroenterol Hepatol ; 4(7): 519-528, 2019 07.
Article in English | MEDLINE | ID: mdl-31080097

ABSTRACT

BACKGROUND: The optimal monitoring strategy for predicting disease course in Crohn's disease remains undefined. We aimed to evaluate the accuracy, safety, and tolerability of an intensive monitoring strategy designed to predict the future course of Crohn's disease in patients with quiescent disease. METHODS: In a prospective observational cohort study, we recruited patients older than 18 years with quiescent (for 3-24 months) Crohn's disease involving the small bowel with confirmed small bowel patency from three tertiary medical centres in Israel. Enrolled patients underwent baseline magnetic resonance enterography (MRE) and patency capsule, clinical or biomarker assessment every 3 months, and video capsule endoscopy (VCE) at baseline and every 6 months for 2 years or until a clinical flare (the primary outcome, defined as an increase in the Crohn's disease activity index score by 70 points or more) or disease worsening necessitating treatment intensification. We assessed the ability of the different Crohn's disease monitoring methods used to predict the occurrence of a flare during the 24-month follow-up period. FINDINGS: Of 90 screened patients, 29 were excluded (17 because of non-patent small bowel). Of the 61 patients enrolled between July 3, 2013, and Feb 1, 2015, 17 (28%) had a flare during the 24-month follow-up. No clinicodemographic parameter predicted future flare. A baseline VCE Lewis score of 350 or more identified patients with future flare (area under the curve [AUC] 0·79, 95% CI 0·66-0·88; p<0·0001; hazard ratio 10·7, 3·8-30·3). C-reactive protein at baseline had an AUC of 0·73 (0·6-0·84; p=0·0013) for predicting flare. The AUC of baseline faecal calprotectin for the prediction of flare occurring within 2 years was 0·62 (0·49-0·74; p=0·17), but progressively improved for shorter timespans and reached an AUC of 0·81 (0·76-0·85) for the prediction of flare occurring within 3 months. Of four MRE-based indices, only MRE global score correlated with 2-year flare risk (AUC 0·71, 0·58-0·82; p=0·024). During follow-up, a Lewis score increase of 383 points or more from baseline predicted imminent disease exacerbation within 6 months (AUC 0·79, 0·65-0·89; p=0·011). The safety and tolerability of the 231 VCEs ingested was excellent, with none being retained. INTERPRETATION: In patients with quiescent Crohn's disease involving the small bowel, faecal calprotectin predicts short-term flare risk, whereas VCE predicts both short-term and long-term risk of disease exacerbation. If corroborated by additional studies, protocols incorporating VCE could expand the scope of available methods for monitoring disease activity and predicting outcomes in small bowel Crohn's disease. FUNDING: The Leona M & Harry B Helmsley Charitable Trust.


Subject(s)
Capsule Endoscopy , Crohn Disease/physiopathology , Wound Healing/physiology , Adult , Disease Progression , Female , Humans , Intestinal Mucosa/physiology , Intestine, Small/physiology , Kaplan-Meier Estimate , Male , Prospective Studies , Recurrence , Risk Factors , Young Adult
17.
Am J Gastroenterol ; 114(7): 1142-1151, 2019 07.
Article in English | MEDLINE | ID: mdl-30741738

ABSTRACT

OBJECTIVES: Crohn's disease (CD) is a chronic relapsing-remitting gut inflammatory disorder with a heterogeneous unpredictable course. Dysbiosis occurs in CD; however, whether microbial dynamics in quiescent CD are instrumental in increasing the risk of a subsequent flare remains undefined. METHODS: We analyzed the long-term dynamics of microbial composition in a prospective observational cohort of patients with quiescent CD (45 cases, 217 samples) over 2 years or until clinical flare occurred, aiming to identify whether changes in the microbiome precede and predict clinical relapse. Machine learning was used to prioritize microbial and clinical factors that discriminate between relapsers and nonrelapsers in the quiescent phase. RESULTS: Patients with CD in clinical, biomarker, and mucosal remission showed significantly reduced microbial richness and increased dysbiosis index compared with healthy controls. Of the 45 patients with quiescent CD, 12 (27%) flared during follow-up. Samples in quiescent patients preceding flare showed significantly reduced abundance of Christensenellaceae and S24.7, and increased abundance of Gemellaceae compared with those in remission throughout. A composite flare index was associated with a subsequent flare. Notably, higher individualized microbial instability in the quiescent phase was associated with a higher risk of a subsequent flare (hazard ratio 11.32, 95% confidence interval 3-42, P = 0.0035) using two preflare samples. Importantly, machine learning prioritized the flare index and the intrapersonal instability over clinical factors to best discriminate between relapsers and nonrelapsers. DISCUSSION: Individualized microbial variations in quiescent CD significantly increase the risk of future exacerbation and may provide a model to guide personalized preemptive therapy intensification.


Subject(s)
Crohn Disease/microbiology , Crohn Disease/pathology , Disease Progression , Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Monitoring, Physiologic/methods , Adult , Case-Control Studies , Crohn Disease/therapy , Female , Follow-Up Studies , Humans , Intestinal Mucosa/microbiology , Linear Models , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Recurrence , Reference Values , Risk Assessment , Severity of Illness Index , Statistics, Nonparametric , Time Factors
18.
Nat Commun ; 10(1): 38, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604764

ABSTRACT

Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α4ß7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches.


Subject(s)
Colitis, Ulcerative/genetics , Genes, Mitochondrial/genetics , Intestinal Mucosa/metabolism , Mitochondrial Diseases/genetics , Transcriptome/genetics , Adolescent , Adult , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Child , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Feces/microbiology , Female , Gene Expression Profiling , Glucocorticoids/therapeutic use , Humans , Integrins/antagonists & inhibitors , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mesalamine/therapeutic use , Microbiota , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/microbiology , Mitochondrial Diseases/pathology , Precision Medicine/methods , Prospective Studies , Rectum/metabolism , Rectum/microbiology , Rectum/pathology , Remission Induction/methods , Sequence Analysis, RNA , Severity of Illness Index , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
19.
Gene ; 721S: 100004, 2019.
Article in English | MEDLINE | ID: mdl-34530998

ABSTRACT

BACKGROUND: Avian avulavirus-1 (AAvV-1, previously Newcastle Disease Virus) is responsible for poultry and wild birds' disease outbreaks. Numerous whole genome sequencing methods were reported for this virus. These methods included cloning, specific primers amplification, shotgun PCR approaches, Sequence Independent Single Primer Amplification and next generation sequencing platform kits. METHODS: Three methods were used to sequence 173 Israeli Avian avulavirus-1 field isolates and one vaccine strain (VH). The sequencing was performed on Proton and Ion Torrent Personal Genome Machine and to a lesser extent, Illumina MiSeq and NextSeq sequencers. Target specific primers (SP) and Sequence Independent Single Primer Amplification (SISPA) products sequenced via the Ion torrent sequencer had a high error rate and truncated genomes. All the next generation sequencing platform sequencing kits generated high sequence accuracy and near-complete genomic size. RESULTS: A high level of mutations was observed in the intergenic regions between the avian avulavirus-1 genes. Within genes, multiple regions are more mutated than the Fusion region currently used for typing. CONCLUSIONS: Our findings suggest that the whole genome sequencing by the Ion torrent sequencing kit is sufficient. However, when higher fidelity is desired, the Illumina NextSeq and Proton torrent sequencing kits were found to be preferable.

20.
Bioinformatics ; 35(11): 1907-1915, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30346482

ABSTRACT

MOTIVATION: RNA viruses generate a cloud of genetic variants within each host. This cloud contains high-frequency genotypes, and many rare variants. The dynamics of these variants is crucial to understand viral evolution and their effect on their host. RESULTS: We use an experimental evolution system to show that the genetic cloud surrounding the Coxsackie virus master sequence slowly, but steadily, evolves over hundreds of generations. This movement is determined by strong context-dependent mutations, where the frequency and type of mutations are affected by neighboring positions, even in silent mutations. This context-dependent mutation pattern serves as a spearhead for the viral population's movement within the adaptive landscape and affects which new dominant variants will emerge. The non-local mutation patterns affect the mutated dinucleotide distribution, and eventually lead to a non-uniform dinucleotide distribution in the main viral sequence. We tested these results on other RNA viruses with similar conclusions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genes, Viral , Adaptation, Physiological , Genotype , Mutation , RNA Viruses , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...