Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301010

ABSTRACT

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Ikaros Transcription Factor , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Ikaros Transcription Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Proteolysis/drug effects , Drug Resistance, Neoplasm/drug effects
3.
J Med Chem ; 60(2): 627-640, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28005357

ABSTRACT

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Isoxazoles/pharmacology , Oxazepines/pharmacology , Oxazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Active Transport, Cell Nucleus , Animals , Binding Sites , Cell Nucleus/metabolism , Dogs , HEK293 Cells , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Heterocyclic Compounds, Bridged-Ring/chemistry , Humans , Imidazoles/pharmacology , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Mice , NF-kappa B p50 Subunit/metabolism , NF-kappa B p52 Subunit/metabolism , Oxazepines/chemical synthesis , Oxazepines/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects , NF-kappaB-Inducing Kinase
4.
Cancer Cell ; 26(3): 402-413, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25155755

ABSTRACT

Numerous oncogenic mutations occur within the BRAF kinase domain (BRAF(KD)). Here we show that stable BRAF-MEK1 complexes are enriched in BRAF(WT) and KRAS mutant (MT) cells but not in BRAF(MT) cells. The crystal structure of the BRAF(KD) in a complex with MEK1 reveals a face-to-face dimer sensitive to MEK1 phosphorylation but insensitive to BRAF dimerization. Structure-guided studies reveal that oncogenic BRAF mutations function by bypassing the requirement for BRAF dimerization for activity or weakening the interaction with MEK1. Finally, we show that conformation-specific BRAF inhibitors can sequester a dormant BRAF-MEK1 complex resulting in pathway inhibition. Taken together, these findings reveal a regulatory role for BRAF in the MAPK pathway independent of its kinase activity but dependent on interaction with MEK.


Subject(s)
MAP Kinase Kinase 1/chemistry , Proto-Oncogene Proteins B-raf/chemistry , Catalytic Domain , Crystallography, X-Ray , HCT116 Cells , HEK293 Cells , Humans , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Models, Molecular , Mutation, Missense , Point Mutation , Protein Structure, Quaternary , Protein Structure, Secondary , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras) , Signal Transduction , ras Proteins/genetics
5.
Bioorg Med Chem Lett ; 24(18): 4546-4552, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25139565

ABSTRACT

MAP4K4 has been shown to regulate key cellular processes that are tied to disease pathogenesis. In an effort to generate small molecule MAP4K4 inhibitors, a fragment-based screen was carried out and a pyrrolotriazine fragment with excellent ligand efficiency was identified. Further modification of this fragment guided by X-ray crystal structures and molecular modeling led to the discovery of a series of promising compounds with good structural diversity and physicochemical properties. These compounds exhibited single digit nanomolar potency and compounds 35 and 44 achieved good in vivo exposure.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacology , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , NF-kappaB-Inducing Kinase
6.
J Med Chem ; 57(8): 3484-93, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24673130

ABSTRACT

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is a serine/threonine kinase implicated in the regulation of many biological processes. A fragment-based lead discovery approach was used to generate potent and selective MAP4K4 inhibitors. The fragment hit pursued in this article had excellent ligand efficiency (LE), an important attribute for subsequent successful optimization into drug-like lead compounds. The optimization efforts eventually led us to focus on the pyridopyrimidine series, from which 6-(2-fluoropyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (29) was identified. This compound had low nanomolar potency, excellent kinase selectivity, and good in vivo exposure, and demonstrated in vivo pharmacodynamic effects in a human tumor xenograft model.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Animals , Drug Discovery , Female , Intracellular Signaling Peptides and Proteins/chemistry , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship
7.
J Med Chem ; 57(3): 770-92, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24405419

ABSTRACT

Potent, trans-2-(pyridin-3-yl)cyclopropanecarboxamide-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using fragment-based screening and structure-based design techniques. Multiple crystal structures were obtained of initial fragment leads, and this structural information was utilized to improve the biochemical and cell-based potency of the associated molecules. Many of the optimized compounds exhibited nanomolar antiproliferative activities against human tumor lines in in vitro cell culture experiments. In a key example, a fragment lead (13, KD = 51 µM) was elaborated into a potent NAMPT inhibitor (39, NAMPT IC50 = 0.0051 µM, A2780 cell culture IC50 = 0.000 49 µM) which demonstrated encouraging in vivo efficacy in an HT-1080 mouse xenograft tumor model.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cyclopropanes/chemical synthesis , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemical synthesis , Sulfones/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Drug Screening Assays, Antitumor , Heterografts , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Protein Conformation , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
8.
Bioorg Med Chem Lett ; 24(3): 954-62, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24433859

ABSTRACT

The fragment-based identification of two novel and potent biochemical inhibitors of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme is described. These compounds (51 and 63) incorporate an amide moiety derived from 3-aminopyridine, and are thus structurally distinct from other known anti-NAMPT agents. Each exhibits potent inhibition of NAMPT biochemical activity (IC50=19 and 15 nM, respectively) as well as robust antiproliferative properties in A2780 cell culture experiments (IC50=121 and 99 nM, respectively). However, additional biological studies indicate that only inhibitor 51 exerts its A2780 cell culture effects via a NAMPT-mediated mechanism. The crystal structures of both 51 and 63 in complex with NAMPT are also independently described.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Aminopyridines/chemical synthesis , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Amides/chemistry , Aminopyridines/chemistry , Aminopyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
9.
ChemMedChem ; 9(1): 73-7, 2, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24259468

ABSTRACT

Although they represent attractive therapeutic targets, caspases have so far proven recalcitrant to the development of drugs targeting the active site. Allosteric modulation of caspase activity is an alternate strategy that potentially avoids the need for anionic and electrophilic functionality present in most active-site inhibitors. Caspase-6 has been implicated in neurodegenerative disease, including Huntington's and Alzheimer's diseases. Herein we describe a fragment-based lead discovery effort focused on caspase-6 in its active and zymogen forms. Fragments were identified for procaspase-6 using surface plasmon resonance methods and subsequently shown by X-ray crystallography to bind a putative allosteric site at the dimer interface. A fragment-merging strategy was employed to produce nanomolar-affinity ligands that contact residues in the L2 loop at the dimer interface, significantly stabilizing procaspase-6. Because rearrangement of the L2 loop is required for caspase-6 activation, our results suggest a strategy for the allosteric control of caspase activation with drug-like small molecules.


Subject(s)
Caspase 6/metabolism , Small Molecule Libraries/chemistry , Allosteric Site , Binding Sites , Caspase 6/chemistry , Crystallography, X-Ray , Dimerization , Drug Design , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Hydrogen-Ion Concentration , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Small Molecule Libraries/metabolism , Transition Temperature
10.
PLoS One ; 7(12): e50864, 2012.
Article in English | MEDLINE | ID: mdl-23227217

ABSTRACT

Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound's inhibitory activity is also dependent on the amino acid sequence and P1' character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.


Subject(s)
Caspase 6/metabolism , Caspase Inhibitors/chemistry , Caspase Inhibitors/pharmacology , Amino Acid Sequence , Caspase 6/chemistry , Caspase Inhibitors/analysis , Crystallography, X-Ray , Drug Evaluation, Preclinical , Kinetics , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Reproducibility of Results , Substrate Specificity/drug effects , Surface Plasmon Resonance
11.
J Med Chem ; 54(8): 2592-601, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21438527

ABSTRACT

Vismodegib (GDC-0449) is is an orally available selective Hedgehog pathway inhibitor in development for cancer treatment. The drug is ≥95% protein bound in plasma at clinically relevant concentrations and has an approximately 200-fold longer single dose half-life in humans than rats. We have identified a strong linear relationship between plasma drug concentrations and α-1-acid glycoprotein (AAG) in a phase I study. Biophysical and cellular techniques have been used to reveal that vismodegib strongly binds to human AAG (K(D) = 13 µM) and binds albumin with lower affinity (K(D) = 120 µM). Additionally, binding to rat AAG is reduced ∼20-fold relative to human, whereas the binding affinity to rat and human albumin was similar. Molecular docking studies reveal the reason for the signficiant species dependence on binding. These data highlight the utility of biophysical techniques in creating a comprehensive picture of protein binding across species.


Subject(s)
Anilides/metabolism , Hedgehog Proteins/antagonists & inhibitors , Pyridines/metabolism , Anilides/administration & dosage , Anilides/pharmacokinetics , Animals , Biophysics , Cell Line , Half-Life , Hedgehog Proteins/metabolism , Humans , Protein Binding , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Signal Transduction/drug effects , Species Specificity , Thermodynamics
12.
Nat Chem Biol ; 7(1): 41-50, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113169

ABSTRACT

Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1ß and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , B-Lymphocytes/drug effects , Benzamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Myeloid Cells/drug effects , Protein Kinase Inhibitors/therapeutic use , Agammaglobulinaemia Tyrosine Kinase , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Autoantibodies/immunology , Autoantibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Benzamides/chemistry , Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Mice , Myeloid Cells/immunology , Myeloid Cells/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/pharmacology , Protein-Tyrosine Kinases/therapeutic use , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...