Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 122(3): 933-946, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31291156

ABSTRACT

Humans rapidly adapt reaching movements in response to perturbations (e.g., manipulations of movement dynamics or visual feedback). Following a break, when reexposed to the same perturbation, subjects demonstrate savings, a faster learning rate compared with the time course of initial training. Although this has been well studied, there are open questions on the extent early savings reflects the rapid recall of previous performance. To address this question, we examined how the properties of initial training (duration and final adaptive state) influence initial single-trial adaptation to force-field perturbations when training sessions were separated by 24 h. There were two main groups that were distinct based on the presence or absence of a washout period at the end of day 1 (with washout vs. without washout). We also varied the training duration on day 1 (15, 30, 90, or 160 training trials), resulting in 8 subgroups of subjects. We show that single-trial adaptation on day 2 scaled with training duration, even for similar asymptotic levels of learning on day 1 of training. Interestingly, the temporal force profile following the first perturbation on day 2 matched that at the end of day 1 for the longest training duration group that did not complete the washout. This correspondence persisted but was significantly lower for shorter training durations and the washout subject groups. Collectively, the results suggest that the adaptation observed very early in reexposure results from the rapid recall of the previously learned motor recalibration but is highly dependent on the initial training duration and final adaptive state.NEW & NOTEWORTHY The extent initial readaptation reflects the recall of previous motor performance is largely unknown. We examined early single-trial force-field adaptation on the second day of training and distinguished initial retention from recall. We found that the single-trial adaptation following the 24-h break matched that at the end of the first day, but this recall was modified by the training duration and final level of learning on the first day of training.


Subject(s)
Adaptation, Physiological/physiology , Mental Recall/physiology , Motor Activity/physiology , Practice, Psychological , Psychomotor Performance/physiology , Adult , Feedback, Sensory/physiology , Female , Humans , Male , Time Factors
2.
Article in English | MEDLINE | ID: mdl-29529412

ABSTRACT

BACKGROUND: Symptoms of psychosis in schizophrenia reflect disturbances in sense of agency-difficulty distinguishing internally from externally generated sensory and perceptual experiences. One theory attributes these anomalies to a disruption in corollary discharge (CD), an internal copy of generated motor commands used to distinguish self-movement-generated sensations from externally generated stimulation. METHODS: We used a transsaccadic shift detection paradigm to examine possible deficits in CD and sense of agency based on the ability to perceive visual changes in 31 schizophrenia patients (SZPs) and 31 healthy control subjects. We derived perceptual measures based on manual responses indicating the transsaccadic target shift direction. We also developed a distance-from-unity-line measure to quantify use of CD versus purely sensory (visual) information in evaluating visual changes in the environment after an eye movement. RESULTS: SZPs had higher perceptual thresholds in detecting shift of target location than healthy control subjects, regardless of movement direction or amplitude. Despite producing similar hypometric saccades, healthy control subjects overestimated target location, whereas SZPs relied more on the experienced visual error and consequently underestimated the target position. We show that in SZPs the postsaccadic judgment of the initial target location was largely aligned with the measure based only on visual error, suggesting a deficit in the use of CD. This CD deficit also correlated with positive schizophrenia symptoms and disturbances in sense of agency. CONCLUSIONS: These results provide a novel approach in quantifying abnormal use of CD in SZPs and provide a framework to distinguish deficits in sensory processing versus defects in the internal CD-based monitoring of movement.


Subject(s)
Eye Movements/physiology , Psychomotor Performance/physiology , Schizophrenia/physiopathology , Visual Perception/physiology , Adult , Aged , Cognition/physiology , Female , Humans , Male , Middle Aged , Photic Stimulation/methods
3.
J Neurophysiol ; 118(4): 2483-2498, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28794198

ABSTRACT

Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information.NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1) delayed and 2) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information.


Subject(s)
Feedback, Physiological , Movement , Visual Perception , Adolescent , Adult , Female , Hand/innervation , Hand/physiology , Humans , Male , Reaction Time
4.
Neural Netw ; 32: 130-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22386597

ABSTRACT

In the past three decades, the interest in trust has grown significantly due to its important role in our modern society. Everyday social experience involves "confidence" among people, which can be interpreted at the neurological level of a human brain. Recent studies suggest that oxytocin is a centrally-acting neurotransmitter important in the development and alteration of trust. Its administration in humans seems to increase trust and reduce fear, in part by directly inhibiting the amygdala. However, the cerebral microcircuitry underlying this mechanism is still unknown. We propose the first biologically realistic model for trust, simulating spiking neurons in the cortex in a real-time human-robot interaction simulation. At the physiological level, oxytocin cells were modeled with triple apical dendrites characteristic of their structure in the paraventricular nucleus of the hypothalamus. As trust was established in the simulation, this architecture had a direct inhibitory effect on the amygdala tonic firing, which resulted in a willingness to exchange an object from the trustor (virtual neurorobot) to the trustee (human actor). Our software and hardware enhancements allowed the simulation of almost 100,000 neurons in real time and the incorporation of a sophisticated Gabor mechanism as a visual filter. Our brain was functional and our robotic system was robust in that it trusted or distrusted a human actor based on movement imitation.


Subject(s)
Intention , Robotics , Trust , Algorithms , Amygdala/physiology , Artificial Intelligence , Brain/physiology , Cerebral Cortex/physiology , Computer Simulation , Computers , Dendrites/physiology , Humans , Interpersonal Relations , Models, Neurological , Neurons/physiology , Oxytocin/physiology , Paraventricular Hypothalamic Nucleus/physiology , Software , Synapses/physiology , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...