Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
PLoS Comput Biol ; 19(6): e1011120, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37319143

ABSTRACT

Stand-alone life science training events and e-learning solutions are among the most sought-after modes of training because they address both point-of-need learning and the limited timeframes available for "upskilling." Yet, finding relevant life sciences training courses and materials is challenging because such resources are not marked up for internet searches in a consistent way. This absence of markup standards to facilitate discovery, re-use, and aggregation of training resources limits their usefulness and knowledge translation potential. Through a joint effort between the Global Organisation for Bioinformatics Learning, Education and Training (GOBLET), the Bioschemas Training community, and the ELIXIR FAIR Training Focus Group, a set of Bioschemas Training profiles has been developed, published, and implemented for life sciences training courses and materials. Here, we describe our development approach and methods, which were based on the Bioschemas model, and present the results for the 3 Bioschemas Training profiles: TrainingMaterial, Course, and CourseInstance. Several implementation challenges were encountered, which we discuss alongside potential solutions. Over time, continued implementation of these Bioschemas Training profiles by training providers will obviate the barriers to skill development, facilitating both the discovery of relevant training events to meet individuals' learning needs, and the discovery and re-use of training and instructional materials.


Subject(s)
Biological Science Disciplines , Curriculum , Humans , Learning , Computational Biology/education , Biological Science Disciplines/education
3.
Brief Bioinform ; 20(2): 398-404, 2019 03 22.
Article in English | MEDLINE | ID: mdl-28968751

ABSTRACT

Bioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide. This article briefly reviews the principal findings of a number of these studies. We see that there is still a strong appetite for short courses to improve expertise and confidence in data analysis and interpretation; strikingly, however, the most urgent appeal is for bioinformatics to be woven into the fabric of life science degree programmes. Satisfying the relentless training needs of current and future generations of life scientists will require a concerted response from stakeholders across the globe, who need to deliver sustainable solutions capable of both transforming education curricula and cultivating a new cadre of trainer scientists.


Subject(s)
Biological Science Disciplines/education , Biomedical Research , Computational Biology/education , Computational Biology/methods , Data Curation/methods , Data Science/education , Humans , Surveys and Questionnaires
4.
PLoS Comput Biol ; 14(2): e1005772, 2018 02.
Article in English | MEDLINE | ID: mdl-29390004

ABSTRACT

Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans.


Subject(s)
Computational Biology/education , Curriculum , Education, Graduate , Systems Biology/education , Advisory Committees , Africa , Algorithms , Genetic Predisposition to Disease , Illinois , New South Wales , Ohio , Pennsylvania , Software , Surveys and Questionnaires , United Kingdom , Universities
5.
Nature ; 544(7649): 161, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28406196
6.
Bioinformatics ; 33(16): 2607-2608, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28407033

ABSTRACT

SUMMARY: The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping 'recommendations', provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. AVAILABILITY AND IMPLEMENTATION: BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. CONTACT: carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io.


Subject(s)
Computational Biology/methods , Databases, Factual , Software
7.
PLoS Comput Biol ; 12(6): e1004916, 2016 06.
Article in English | MEDLINE | ID: mdl-27281025

ABSTRACT

Bioinformatics.ca has been hosting continuing education programs in introductory and advanced bioinformatics topics in Canada since 1999 and has trained more than 2,000 participants to date. These workshops have been adapted over the years to keep pace with advances in both science and technology as well as the changing landscape in available learning modalities and the bioinformatics training needs of our audience. Post-workshop surveys have been a mandatory component of each workshop and are used to ensure appropriate adjustments are made to workshops to maximize learning. However, neither bioinformatics.ca nor others offering similar training programs have explored the long-term impact of bioinformatics continuing education training. Bioinformatics.ca recently initiated a look back on the impact its workshops have had on the career trajectories, research outcomes, publications, and collaborations of its participants. Using an anonymous online survey, bioinformatics.ca analyzed responses from those surveyed and discovered its workshops have had a positive impact on collaborations, research, publications, and career progression.


Subject(s)
Career Mobility , Computational Biology/education , Curriculum , Education, Continuing/organization & administration , Education/organization & administration , Research/education
8.
PLoS Comput Biol ; 11(2): e1003972, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25654371

ABSTRACT

"Scientific community" refers to a group of people collaborating together on scientific-research-related activities who also share common goals, interests, and values. Such communities play a key role in many bioinformatics activities. Communities may be linked to a specific location or institute, or involve people working at many different institutions and locations. Education and training is typically an important component of these communities, providing a valuable context in which to develop skills and expertise, while also strengthening links and relationships within the community. Scientific communities facilitate: (i) the exchange and development of ideas and expertise; (ii) career development; (iii) coordinated funding activities; (iv) interactions and engagement with professionals from other fields; and (v) other activities beneficial to individual participants, communities, and the scientific field as a whole. It is thus beneficial at many different levels to understand the general features of successful, high-impact bioinformatics communities; how individual participants can contribute to the success of these communities; and the role of education and training within these communities. We present here a quick guide to building and maintaining a successful, high-impact bioinformatics community, along with an overview of the general benefits of participating in such communities. This article grew out of contributions made by organizers, presenters, panelists, and other participants of the ISMB/ECCB 2013 workshop "The 'How To Guide' for Establishing a Successful Bioinformatics Network" at the 21st Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) and the 12th European Conference on Computational Biology (ECCB).


Subject(s)
Communication , Computational Biology/organization & administration , Humans , Internet , Social Media
9.
Bioinformatics ; 31(1): 140-2, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25189782

ABSTRACT

SUMMARY: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN). Building on this work, we have created a centralized portal for sharing training materials and courses, including a catalogue of trainers and course organizers, and an announcement service for training events. For course organizers, the portal provides opportunities to promote their training events; for trainers, the portal offers an environment for sharing materials, for gaining visibility for their work and promoting their skills; for trainees, it offers a convenient one-stop shop for finding suitable training resources and identifying relevant training events and activities locally and worldwide. AVAILABILITY AND IMPLEMENTATION: http://mygoblet.org/training-portal.


Subject(s)
Computational Biology/education , Curriculum , Database Management Systems , Research Personnel/education , Teaching , Humans , Programming Languages , Software Design
11.
Brief Bioinform ; 14(5): 528-37, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23803301

ABSTRACT

The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.


Subject(s)
Biological Science Disciplines/education , Computational Biology/education , Curriculum , Data Mining , Database Management Systems , Programming Languages , Software Design , Teaching
12.
Bioinformatics ; 29(15): 1919-21, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23742982

ABSTRACT

SUMMARY: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. AVAILABILITY: http://iann.pro/iannviewer CONTACT: manuel.corpas@tgac.ac.uk.


Subject(s)
Biological Science Disciplines , Software , Anniversaries and Special Events , Congresses as Topic , Internet
13.
Brief Bioinform ; 14(5): 556-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23515468

ABSTRACT

With the advent of YouTube channels in bioinformatics, open platforms for problem solving in bioinformatics, active web forums in computing analyses and online resources for learning to code or use a bioinformatics tool, the more traditional continuing education bioinformatics training programs have had to adapt. Bioinformatics training programs that solely rely on traditional didactic methods are being superseded by these newer resources. Yet such face-to-face instruction is still invaluable in the learning continuum. Bioinformatics.ca, which hosts the Canadian Bioinformatics Workshops, has blended more traditional learning styles with current online and social learning styles. Here we share our growing experiences over the past 12 years and look toward what the future holds for bioinformatics training programs.


Subject(s)
Computational Biology/education , Computer-Assisted Instruction/methods , Internet , Canada , Computer-Assisted Instruction/trends , Education, Continuing/methods , Education, Continuing/trends , Learning , Teaching
14.
Nucleic Acids Res ; 40(Web Server issue): W3-W12, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22700703

ABSTRACT

The 2012 Bioinformatics Links Directory update marks the 10th special Web Server issue from Nucleic Acids Research. Beginning with content from their 2003 publication, the Bioinformatics Links Directory in collaboration with Nucleic Acids Research has compiled and published a comprehensive list of freely accessible, online tools, databases and resource materials for the bioinformatics and life science research communities. The past decade has exhibited significant growth and change in the types of tools, databases and resources being put forth, reflecting both technology changes and the nature of research over that time. With the addition of 90 web server tools and 12 updates from the July 2012 Web Server issue of Nucleic Acids Research, the Bioinformatics Links Directory at http://bioinformatics.ca/links_directory/ now contains an impressive 134 resources, 455 databases and 1205 web server tools, mirroring the continued activity and efforts of our field.


Subject(s)
Computational Biology , Directories as Topic , Software , Databases, Genetic , Internet , Software/trends
15.
Brief Bioinform ; 13(3): 383-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22110242

ABSTRACT

Funding bodies are increasingly recognizing the need to provide graduates and researchers with access to short intensive courses in a variety of disciplines, in order both to improve the general skills base and to provide solid foundations on which researchers may build their careers. In response to the development of 'high-throughput biology', the need for training in the field of bioinformatics, in particular, is seeing a resurgence: it has been defined as a key priority by many Institutions and research programmes and is now an important component of many grant proposals. Nevertheless, when it comes to planning and preparing to meet such training needs, tension arises between the reward structures that predominate in the scientific community which compel individuals to publish or perish, and the time that must be devoted to the design, delivery and maintenance of high-quality training materials. Conversely, there is much relevant teaching material and training expertise available worldwide that, were it properly organized, could be exploited by anyone who needs to provide training or needs to set up a new course. To do this, however, the materials would have to be centralized in a database and clearly tagged in relation to target audiences, learning objectives, etc. Ideally, they would also be peer reviewed, and easily and efficiently accessible for downloading. Here, we present the Bioinformatics Training Network (BTN), a new enterprise that has been initiated to address these needs and review it, respectively, to similar initiatives and collections.


Subject(s)
Computational Biology/education , Community Networks , Humans , Research Personnel/education
17.
Nucleic Acids Res ; 39(Web Server issue): W3-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21715385

ABSTRACT

The Bioinformatics Links Directory continues its collaboration with Nucleic Acids Research to collaboratively publish and compile a freely accessible, online collection of tools, databases and resource materials for bioinformatics and molecular biology research. The July 2011 Web Server issue of Nucleic Acids Research adds an additional 78 web server tools and 14 updates to the directory at http://bioinformatics.ca/links_directory/.


Subject(s)
Computational Biology , Databases, Genetic , Directories as Topic , Software , Internet
18.
Nucleic Acids Res ; 38(Web Server issue): W3-6, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20542914

ABSTRACT

The Links Directory at Bioinformatics.ca continues its collaboration with Nucleic Acids Research to jointly publish and compile a freely accessible, online collection of tools, databases and resource materials for bioinformatics and molecular biology research. The July 2010 Web Server issue of Nucleic Acids Research adds an additional 115 web server tools and 7 updates to the directory at http://bioinformatics.ca/links_directory/, bringing the total number of servers listed close to an impressive 1500 links. The Bioinformatics Links Directory represents an excellent community resource for locating bioinformatic tools and databases to aid one's research, and in this context bioinformatic education needs and initiatives are discussed. A complete list of all links featured in this Nucleic Acids Research 2010 Web Server issue can be accessed online at http://bioinformatics.ca/links_directory/narweb2010/. The 2010 update of the Bioinformatics Links Directory, which includes the Web Server list and summaries, is also available online at the Nucleic Acids Research website, http://nar.oxfordjournals.org/.


Subject(s)
Computational Biology , Directories as Topic , Software , Computational Biology/education , Internet
19.
Nucleic Acids Res ; 37(Web Server issue): W3-5, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19528072

ABSTRACT

All of the life science research web servers published in this and previous issues of Nucleic Acids Research, together with other useful tools, databases and resources for bioinformatics and molecular biology research are freely accessible online through the Bioinformatics Links Directory, http://bioinformatics.ca/links_directory/. Entirely dependent on user feedback and community input, the Bioinformatics Links Directory exemplifies an open access research tool and resource. With 112 websites featured in the July 2009 Web Server Issue of Nucleic Acids Research, the 2009 update brings the total number of servers listed in the Bioinformatics Links Directory close to an impressive 1400 links. A complete list of all links listed in this Nucleic Acids Research 2009 Web Server Issue can be accessed online at http://bioinfomatics.ca/links_directory/narweb2009/. The 2009 update of the Bioinformatics Links Directory, which includes the Web Server list and summaries, is also available online at the Nucleic Acids Research website, http://nar.oxfordjournals.org/.


Subject(s)
Computational Biology , Directories as Topic , Software , History, 21st Century , Internet , Software/history
20.
Nucleic Acids Res ; 36(Web Server issue): W2-4, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18586831

ABSTRACT

The Bioinformatics Links Directory, http://bioinformatics.ca/links_directory/, is an online resource for public access to all of the life science research web servers published in this and previous issues of Nucleic Acids Research, together with other useful tools, databases and resources for bioinformatics and molecular biology research. Dependent on community input and development, the Bioinformatics Links Directory exemplifies an open access research tool and resource. The 2008 update includes the 94 web servers featured in the July 2008 Web Server issue of Nucleic Acids Research, bringing the total number of servers listed in the Bioinformatics Links Directory to over 1200 links. A complete list of all links listed in this Nucleic Acids Research 2008 Web Server issue can be accessed online at http://bioinfomatics.ca/links_directory/narweb2008/. The 2008 update of the Bioinformatics Links Directory, which includes the Web Server list and summaries, is also available online at the Nucleic Acids Research website, http://nar.oxfordjournals.org/.


Subject(s)
Computational Biology , Directories as Topic , Software , Internet , Molecular Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...