Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Am J Respir Cell Mol Biol ; 70(2): 119-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37934676

ABSTRACT

Respiratory viral infections are frequent causes of acute respiratory distress syndrome (ARDS), a disabling condition with a mortality of up to 46%. The pulmonary endothelium plays an important role in the development of ARDS as well as the pathogenesis of pulmonary fibrosis; however, the therapeutic potential to modulate endothelium-dependent signaling to prevent deleterious consequences has not been well explored. Here, we used a clinically relevant influenza A virus infection model, endothelial cell-specific transgenic gain-of-function and loss-of-function mice as well as pharmacologic approaches and in vitro modeling, to define the mechanism by which S1PR1 expression is dampened during influenza virus infection and determine whether therapeutic augmentation of S1PR1 has the potential to reduce long-term postviral fibrotic complications. We found that the influenza virus-induced inflammatory milieu promoted internalization of S1PR1, which was pharmacologically inhibited with paroxetine, an inhibitor of GRK2. Moreover, genetic overexpression or administration of paroxetine days after influenza virus infection was sufficient to reduce postviral pulmonary fibrosis. Taken together, our data suggest that endothelial S1PR1 signaling provides critical protection against long-term fibrotic complications after pulmonary viral infection. These findings support the development of antifibrotic strategies that augment S1PR1 expression in virus-induced ARDS to improve long-term patient outcomes.


Subject(s)
Orthomyxoviridae Infections , Pulmonary Fibrosis , Respiratory Distress Syndrome , Animals , Humans , Mice , Endothelium/metabolism , Paroxetine , Sphingosine-1-Phosphate Receptors/metabolism
3.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L190-L198, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36625494

ABSTRACT

Pulmonary fibrosis is characterized by the accumulation of myofibroblasts in the lung and progressive tissue scarring. Fibroblasts exist across a spectrum of states, from quiescence in health to activated myofibroblasts in the setting of injury. Highly activated myofibroblasts have a critical role in the establishment of fibrosis as the predominant source of type 1 collagen and profibrotic mediators. Myofibroblasts are also highly contractile cells and can alter lung biomechanical properties through tissue contraction. Inhibiting signaling pathways involved in myofibroblast activation could therefore have significant therapeutic value. One of the ways myofibroblast activation occurs is through activation of the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) pathway, which signals through intracellular actin polymerization. However, concerns surrounding the pleiotropic and ubiquitous nature of these signaling pathways have limited the translation of inhibitory drugs. Herein, we demonstrate a novel therapeutic antifibrotic strategy using myofibroblast-targeted nanoparticles containing a MTRF/SRF pathway inhibitor (CCG-1423), which has been shown to block myofibroblast activation in vitro. Myofibroblasts were preferentially targeted via the angiotensin 2 receptor, which has been shown to be selectively upregulated in animal and human studies. These nanoparticles were nontoxic and accumulated in lung myofibroblasts in the bleomycin-induced mouse model of pulmonary fibrosis, reducing the number of these activated cells and their production of profibrotic mediators. Ultimately, in a murine model of lung fibrosis, a single injection of these drugs containing targeted nanoagents reduced fibrosis as compared with control mice. This approach has the potential to deliver personalized therapy by precisely targeting signaling pathways in a cell-specific manner, allowing increased efficacy with reduced deleterious off-target effects.


Subject(s)
Pulmonary Fibrosis , Transcription Factors , Humans , Animals , Mice , Transcription Factors/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Myofibroblasts/metabolism , Serum Response Factor/metabolism , rho-Associated Kinases/metabolism , Fibrosis , Lung/metabolism , Nanotechnology , Cell Differentiation
4.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36626234

ABSTRACT

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Subject(s)
Hypercapnia , Wnt Signaling Pathway , Mice , beta Catenin/metabolism , Cell Proliferation , COVID-19/complications , Hypercapnia/metabolism , Animals
5.
Am J Respir Cell Mol Biol ; 66(1): 38-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34343038

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed. Endothelial injury and the resultant vascular permeability are critical components in the response to tissue injury and are present in patients with IPF. However, it remains unclear how vascular permeability affects lung repair and fibrosis following injury. Lipid mediators such as sphingosine-1-phosphate (S1P) are known to regulate multiple homeostatic processes in the lung including vascular permeability. We demonstrate that endothelial cell-(EC) specific deletion of the S1P receptor 1 (S1PR1) in mice (EC-S1pr1-/-) results in increased lung vascular permeability at baseline. Following a low-dose intratracheal bleomycin challenge, EC-S1pr1-/- mice had increased and persistent vascular permeability compared with wild-type mice, which was strongly correlated with the amount and localization of resulting pulmonary fibrosis. EC-S1pr1-/- mice also had increased immune cell infiltration and activation of the coagulation cascade within the lung. However, increased circulating S1P ligand in ApoM-overexpressing mice was insufficient to protect against bleomycin-induced pulmonary fibrosis. Overall, these data demonstrate that endothelial cell S1PR1 controls vascular permeability in the lung, is associated with changes in immune cell infiltration and extravascular coagulation, and modulates the fibrotic response to lung injury.


Subject(s)
Capillary Permeability , Endothelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Bleomycin , Blood Coagulation , Gene Deletion , Idiopathic Pulmonary Fibrosis/blood , Lung/blood supply , Lung/pathology , Lysophospholipids/blood , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , RNA-Seq , Single-Cell Analysis , Sphingosine/analogs & derivatives , Sphingosine/blood
6.
Arch. bronconeumol. (Ed. impr.) ; 56(9): 586-591, sept. 2020. ilus, graf
Article in English | IBECS | ID: ibc-198503

ABSTRACT

Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes


La infección por el virus de la gripe se caracteriza por síntomas que van desde la congestión leve y los dolores corporales hasta el edema pulmonar grave y la insuficiencia respiratoria. Aunque que la mayoría de las personas expuestas presentan síntomas leves y se recuperan con poca morbilidad, se estima que cada año 500.000 personas en todo el mundo fallecen por las complicaciones relacionadas con esta infección. En estos casos graves, se produce una respuesta inflamatoria exagerada, conocida como «tormenta de citocinas», que causa daños en la barrera epitelial respiratoria y el desarrollo del síndrome de distrés respiratorio agudo. Los datos de estudios retrospectivos en humanos, así como de modelos animales experimentales de infección por el virus de la gripe, resaltan la delgada línea que existe entre una respuesta inmunitaria excesiva y una inadecuada, cuando la respuesta del huésped debe mantener el equilibrio entre el aclaramiento viral y la inflamación exagerada. Los moduladores farmacológicos de la inflamación actuales, incluidos los corticoides y las estatinas, no han tenido éxito a la hora de mejorar los resultados de la infección por el virus de la gripe. Hemos publicado que la amplitud de la respuesta inflamatoria está regulada por la actividad del complejo de ensamblaje de cadenas lineales de ubiquitina (LUBAC, por sus siglas en inglés) y que la atenuación de la actividad de LUBAC protege durante la infección grave por este virus. La modulación terapéutica de la actividad de LUBAC puede ser crucial para mejorar los resultados, ya que funciona como un reóstato molecular de la respuesta del huésped. Aquí revisamos la evidencia al respecto de la modulación de la inflamación para mejorar el daño pulmonar inducido por la infección por el virus de la gripe, los datos sobre las estrategias antiinflamatorias actuales y las posibles nuevas vías para tratar la inflamación viral y mejorar los resultados


Subject(s)
Humans , Acute Lung Injury/drug therapy , Acute Lung Injury/virology , Influenza A virus , Lung Injury/virology , Ubiquitin/therapeutic use , Immunomodulation
7.
Arch Bronconeumol (Engl Ed) ; 56(9): 586-591, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32405132

ABSTRACT

Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.


La infección por el virus de la gripe se caracteriza por síntomas que van desde la congestión leve y los dolores corporales hasta el edema pulmonar grave y la insuficiencia respiratoria. Aunque que la mayoría de las personas expuestas presentan síntomas leves y se recuperan con poca morbilidad, se estima que cada año 500.000 personas en todo el mundo fallecen por las complicaciones relacionadas con esta infección. En estos casos graves, se produce una respuesta inflamatoria exagerada, conocida como «tormenta de citocinas¼, que causa daños en la barrera epitelial respiratoria y el desarrollo del síndrome de distrés respiratorio agudo. Los datos de estudios retrospectivos en humanos, así como de modelos animales experimentales de infección por el virus de la gripe, resaltan la delgada línea que existe entre una respuesta inmunitaria excesiva y una inadecuada, cuando la respuesta del huésped debe mantener el equilibrio entre el aclaramiento viral y la inflamación exagerada. Los moduladores farmacológicos de la inflamación actuales, incluidos los corticoides y las estatinas, no han tenido éxito a la hora de mejorar los resultados de la infección por el virus de la gripe. Hemos publicado que la amplitud de la respuesta inflamatoria está regulada por la actividad del complejo de ensamblaje de cadenas lineales de ubiquitina (LUBAC, por sus siglas en inglés) y que la atenuación de la actividad de LUBAC protege durante la infección grave por este virus. La modulación terapéutica de la actividad de LUBAC puede ser crucial para mejorar los resultados, ya que funciona como un reóstato molecular de la respuesta del huésped. Aquí revisamos la evidencia al respecto de la modulación de la inflamación para mejorar el daño pulmonar inducido por la infección por el virus de la gripe, los datos sobre las estrategias antiinflamatorias actuales y las posibles nuevas vías para tratar la inflamación viral y mejorar los resultados.


Subject(s)
Influenza A virus , Lung Injury , Animals , Humans , Immunity , Retrospective Studies , Ubiquitin
8.
Arch Bronconeumol (Engl Ed) ; 56(9): 586-591, 2020 09.
Article in English | MEDLINE | ID: mdl-33994643

ABSTRACT

Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.


La infección por el virus de la gripe se caracteriza por síntomas que van desde la congestión leve y los dolores corporales hasta el edema pulmonar grave y la insuficiencia respiratoria. Aunque que la mayoría de las personas expuestas presentan síntomas leves y se recuperan con poca morbilidad, se estima que cada año 500.000 personas en todo el mundo fallecen por las complicaciones relacionadas con esta infección. En estos casos graves, se produce una respuesta inflamatoria exagerada, conocida como «tormenta de citocinas¼, que causa daños en la barrera epitelial respiratoria y el desarrollo del síndrome de distrés respiratorio agudo. Los datos de estudios retrospectivos en humanos, así como de modelos animales experimentales de infección por el virus de la gripe, resaltan la delgada línea que existe entre una respuesta inmunitaria excesiva y una inadecuada, cuando la respuesta del huésped debe mantener el equilibrio entre el aclaramiento viral y la inflamación exagerada. Los moduladores farmacológicos de la inflamación actuales, incluidos los corticoides y las estatinas, no han tenido éxito a la hora de mejorar los resultados de la infección por el virus de la gripe. Hemos publicado que la amplitud de la respuesta inflamatoria está regulada por la actividad del complejo de ensamblaje de cadenas lineales de ubiquitina (LUBAC, por sus siglas en inglés) y que la atenuación de la actividad de LUBAC protege durante la infección grave por este virus. La modulación terapéutica de la actividad de LUBAC puede ser crucial para mejorar los resultados, ya que funciona como un reóstato molecular de la respuesta del huésped. Aquí revisamos la evidencia al respecto de la modulación de la inflamación para mejorar el daño pulmonar inducido por la infección por el virus de la gripe, los datos sobre las estrategias antiinflamatorias actuales y las posibles nuevas vías para tratar la inflamación viral y mejorar los resultados.


Subject(s)
Influenza A virus , Lung Injury , Animals , Humans , Immunity , Retrospective Studies , Ubiquitin
9.
J Clin Invest ; 130(3): 1301-1314, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31714898

ABSTRACT

Influenza A virus (IAV) is among the most common causes of pneumonia-related death worldwide. Pulmonary epithelial cells are the primary target for viral infection and replication and respond by releasing inflammatory mediators that recruit immune cells to mount the host response. Severe lung injury and death during IAV infection result from an exuberant host inflammatory response. The linear ubiquitin assembly complex (LUBAC), composed of SHARPIN, HOIL-1L, and HOIP, is a critical regulator of NF-κB-dependent inflammation. Using mice with lung epithelial-specific deletions of HOIL-1L or HOIP in a model of IAV infection, we provided evidence that, while a reduction in the inflammatory response was beneficial, ablation of the LUBAC-dependent lung epithelial-driven response worsened lung injury and increased mortality. Moreover, we described a mechanism for the upregulation of HOIL-1L in infected and noninfected cells triggered by the activation of type I IFN receptor and mediated by IRF1, which was maladaptive and contributed to hyperinflammation. Thus, we propose that lung epithelial LUBAC acts as a molecular rheostat that could be selectively targeted to modulate the immune response in patients with severe IAV-induced pneumonia.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Multiprotein Complexes/immunology , Orthomyxoviridae Infections/immunology , Pneumonia, Viral/immunology , Respiratory Mucosa/immunology , A549 Cells , Animals , Dogs , Humans , Influenza A Virus, H1N1 Subtype/genetics , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/immunology
11.
Am J Respir Cell Mol Biol ; 58(4): 471-481, 2018 04.
Article in English | MEDLINE | ID: mdl-29211497

ABSTRACT

Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-ß, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.


Subject(s)
Fibroblasts/enzymology , Lung/enzymology , Pulmonary Fibrosis/prevention & control , rho-Associated Kinases/metabolism , Animals , Apoptosis , Bleomycin , Capillary Permeability , Cell Differentiation , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Epithelial Cells/enzymology , Epithelial Cells/pathology , Fibroblasts/pathology , Haploinsufficiency , Humans , Lung/pathology , Mice, Knockout , Myofibroblasts/enzymology , Myofibroblasts/pathology , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , rho-Associated Kinases/deficiency , rho-Associated Kinases/genetics
12.
Proc Natl Acad Sci U S A ; 114(47): E10178-E10186, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109255

ABSTRACT

Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.


Subject(s)
Carrier Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/pathology , Lung Injury/pathology , Protein Kinase C/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , A549 Cells , Animals , Apoptosis , COS Cells , Carrier Proteins/genetics , Cell Hypoxia , Cell Membrane/metabolism , Chlorocebus aethiops , Down-Regulation , Endocytosis , Epithelial Cells/pathology , Humans , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Injury/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Mutation , Phosphorylation , Primary Cell Culture , Proteolysis , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/genetics
13.
Front Immunol ; 8: 623, 2017.
Article in English | MEDLINE | ID: mdl-28620381

ABSTRACT

The alveolar epithelium secretes cytokines and chemokines that recruit immune cells to the lungs, which is essential for fighting infections but in excess can promote lung injury. Overexpression of FXYD5, a tissue-specific regulator of the Na,K-ATPase, in mice, impairs the alveolo-epithelial barrier, and FXYD5 overexpression in renal cells increases C-C chemokine ligand-2 (CCL2) secretion in response to lipopolysaccharide (LPS). The aim of this study was to determine whether FXYD5 contributes to the lung inflammation and injury. Exposure of alveolar epithelial cells (AEC) to LPS increased FXYD5 levels at the plasma membrane, and FXYD5 silencing prevented both the activation of NF-κB and the secretion of cytokines in response to LPS. Intratracheal instillation of LPS into mice increased FXYD5 levels in the lung. FXYD5 overexpression increased the recruitment of interstitial macrophages and classical monocytes to the lung in response to LPS. FXYD5 silencing decreased CCL2 levels, number of cells, and protein concentration in bronchoalveolar lavage fluid (BALF) after LPS treatment, indicating that FXYD5 is required for the NF-κB-stimulated epithelial production of CCL2, the influx of immune cells, and the increase in alveolo-epithelial permeability in response to LPS. Silencing of FXYD5 also prevented the activation of NF-κB and cytokine secretion in response to interferon α and TNF-α, suggesting that pro-inflammatory effects of FXYD5 are not limited to the LPS-induced pathway. Furthermore, in the absence of other stimuli, FXYD5 overexpression in AEC activated NF-κB and increased cytokine production, while FXYD5 overexpression in mice increased cytokine levels in BALF, indicating that FXYD5 is sufficient to induce the NF-κB-stimulated cytokine secretion by the alveolar epithelium. The FXYD5 overexpression also increased cell counts in BALF, which was prevented by silencing the CCL2 receptor (CCR2), or by treating mice with a CCR2-blocking antibody, confirming that FXYD5-induced CCL2 production leads to the recruitment of monocytes to the lung. Taken together, the data demonstrate that FXYD5 is a key contributor to inflammatory lung injury.

14.
JCI Insight ; 2(9)2017 May 04.
Article in English | MEDLINE | ID: mdl-28469072

ABSTRACT

Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvß6 induction, TGF-ß activation, and the development of pulmonary fibrosis in this vascular leak-dependent model. We used a potentially novel imaging method - ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R - to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvß6/TGF-ß axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.

15.
Biochem J ; 441(1): 453-61, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21939436

ABSTRACT

The absence of Klotho (KL) from mice causes the development of disorders associated with human aging and decreased longevity, whereas increased expression prolongs lifespan. With age, KL protein levels decrease, and keeping levels consistent may promote healthier aging and be disease-modifying. Using the KL promoter to drive expression of luciferase, we conducted a high-throughput screen to identify compounds that activate KL transcription. Hits were identified as compounds that elevated luciferase expression at least 30%. Following validation for dose-dependent activation and lack of cytotoxicity, hit compounds were evaluated further in vitro by incubation with opossum kidney and Z310 rat choroid plexus cells, which express KL endogenously. All compounds elevated KL protein compared with control. To determine whether increased protein resulted in an in vitro functional change, we assayed FGF23 (fibroblast growth factor 23) signalling. Compounds G-I augmented ERK (extracellular-signal-regulated kinase) phosphorylation in FGFR (fibroblast growth factor receptor)-transfected cells, whereas co-transfection with KL siRNA (small interfering RNA) blocked the effect. These compounds will be useful tools to allow insight into the mechanisms of KL regulation. Further optimization will provide pharmacological tools for in vivo studies of KL.


Subject(s)
Gene Expression Regulation/drug effects , Glucuronidase/metabolism , Aging/physiology , Animals , Cell Line , Cloning, Molecular , Drug Screening Assays, Antitumor , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation/physiology , Glucuronidase/genetics , Kidney/cytology , Klotho Proteins , Mice , Opossums , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...