Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(13): 110604, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354033

ABSTRACT

Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.


Subject(s)
Induced Pluripotent Stem Cells , Proteome , Adult , Cell Differentiation , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Proteome/metabolism , Proteomics
2.
Nat Commun ; 12(1): 6298, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728600

ABSTRACT

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Cerebral Cortex/cytology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/cytology , Neocortex/cytology , Neural Stem Cells/cytology , Neuroglia/metabolism , Animals , Cell Differentiation , Cerebral Cortex/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Neocortex/metabolism , Neural Stem Cells/metabolism
3.
Genome Biol ; 21(1): 224, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32867824

ABSTRACT

It is a major challenge to integrate single-cell sequencing data across experiments, conditions, batches, time points, and other technical considerations. New computational methods are required that can integrate samples while simultaneously preserving biological information. Here, we propose an unsupervised reference-free data representation, cluster similarity spectrum (CSS), where each cell is represented by its similarities to clusters independently identified across samples. We show that CSS can be used to assess cellular heterogeneity and enable reconstruction of differentiation trajectories from cerebral organoid and other single-cell transcriptomic data, and to integrate data across experimental conditions and human individuals.


Subject(s)
Genomics/methods , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Unsupervised Machine Learning
4.
Curr Opin Biotechnol ; 55: 167-171, 2019 02.
Article in English | MEDLINE | ID: mdl-30504008

ABSTRACT

Three-dimensional (3D) tissues grown in culture from human stem cells offer the incredible opportunity to analyze and manipulate human development, and to generate patient-specific models of disease. Methods to sequence DNA and RNA in single cells are being used to analyze these so-called 'organoid' systems in high-resolution. Single-cell transcriptomics has been used to quantitate the similarity of organoid cells to primary tissue counterparts in the brain, intestine, liver, and kidney, as well as identify cell-specific responses to environmental variables and disease conditions. The merging of these two technologies, single-cell genomics and organoids, will have profound impact on personalized medicine in the near future.


Subject(s)
High-Throughput Screening Assays/methods , Organoids/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Humans , Organ Specificity/genetics , Precision Medicine
5.
Nat Neurosci ; 21(7): 932-940, 2018 07.
Article in English | MEDLINE | ID: mdl-29915193

ABSTRACT

Ectopic expression of defined transcription factors can force direct cell-fate conversion from one lineage to another in the absence of cell division. Several transcription factor cocktails have enabled successful reprogramming of various somatic cell types into induced neurons (iNs) of distinct neurotransmitter phenotype. However, the nature of the intermediate states that drive the reprogramming trajectory toward distinct iN types is largely unknown. Here we show that successful direct reprogramming of adult human brain pericytes into functional iNs by Ascl1 and Sox2 encompasses transient activation of a neural stem cell-like gene expression program that precedes bifurcation into distinct neuronal lineages. During this transient state, key signaling components relevant for neural induction and neural stem cell maintenance are regulated by and functionally contribute to iN reprogramming and maturation. Thus, Ascl1- and Sox2-mediated reprogramming into a broad spectrum of iN types involves the unfolding of a developmental program via neural stem cell-like intermediates.


Subject(s)
Cell Lineage/physiology , Cellular Reprogramming/physiology , Neural Stem Cells/physiology , Neurons/physiology , Pericytes/physiology , Adult , Aged , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Neural Stem Cells/cytology , Neurons/cytology , Pericytes/cytology , SOXB1 Transcription Factors/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...