Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Methods Mol Biol ; 2424: 217-245, 2022.
Article in English | MEDLINE | ID: mdl-34918298

ABSTRACT

Cancer stem-like cells (CSC) are responsible for tumor progression, chemoresistance, recurrence, and poor outcomes in many cancers, making them critical research and therapeutic targets. One of the critical components potentiating CSC chemoresistance is the interactions between CSC and the surrounding cells in the tumor microenvironment. Our lab has developed several 3D co-culture models to study ovarian CSC interactions with stromal or immune cells found in ovarian tumor microenvironments. In this chapter, we use ovarian cancer as a model to describe the methodologies developed in our lab; however, these techniques are applicable to a wide range of cancers. First, we discuss our method for isolating CSC from heterogeneous tumors and for creating 3D self-assembled tumoroids in hanging drop plates, in either monoculture or co-culture with mesenchymal stem cells or monocytes/macrophages. We then discuss methods for analyzing these models with a focus on isolating cell-type-specific changes and mechanism investigation. Specifically, we describe lentiviral transduction and flow cytometry as established and robust methods to identify and separate each cell type for downstream analysis. We then describe methods to examine CSC functionality with transwell migration assays and colorimetric MTS-based proliferation assays. Finally, we demonstrate enzyme-linked immunosorbent assays (ELISA ) and quantitative polymerase chain reaction (qPCR) methods as mechanistic investigation tools to decouple paracrine and juxtacrine interactions. These methods have wide-reaching applications in cancer research from basic biological investigations, to drug discovery, and personalized drug screening for precision medicine.


Subject(s)
Ovarian Neoplasms , Tumor Microenvironment , Cell Line, Tumor , Coculture Techniques , Drug Resistance, Neoplasm , Female , Humans , Neoplastic Stem Cells , Ovarian Neoplasms/drug therapy
2.
Acta Biomater ; 132: 401-420, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33940195

ABSTRACT

Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.


Subject(s)
Ovarian Neoplasms , Tumor Microenvironment , Extracellular Matrix , Female , Humans , Neoplasm Recurrence, Local , Precision Medicine
3.
JCI Insight ; 5(11)2020 06 04.
Article in English | MEDLINE | ID: mdl-32369446

ABSTRACT

BACKGROUNDEpidemiologic studies suggest that metformin has antitumor effects. Laboratory studies indicate metformin impacts cancer stem-like cells (CSCs). As part of a phase II trial, we evaluated the impact of metformin on CSC number and on carcinoma-associated mesenchymal stem cells (CA-MSCs) and clinical outcomes in nondiabetic patients with advanced-stage epithelial ovarian cancer (EOC).METHODSThirty-eight patients with stage IIC (n = 1)/III (n = 25)/IV (n = 12) EOC were treated with either (a) neoadjuvant metformin, debulking surgery, and adjuvant chemotherapy plus metformin or (b) neoadjuvant chemotherapy and metformin, interval debulking surgery, and adjuvant chemotherapy plus metformin. Metformin-treated tumors, compared with historical controls, were evaluated for CSC number and chemotherapy response. Primary endpoints were (a) a 2-fold or greater reduction in aldehyde dehydrogenase-positive (ALDH+) CD133+ CSCs and (b) a relapse-free survival at 18 months of more than 50%.RESULTSMetformin was well tolerated. Median progression-free survival was 18.0 months (95% CI 14.0-21.6) with relapse-free survival at 18 months of 59.3% (95% CI 38.6-70.5). Median overall survival was 57.9 months (95% CI 28.0-not estimable). Tumors treated with metformin had a 2.4-fold decrease in ALDH+CD133+ CSCs and increased sensitivity to cisplatin ex vivo. Furthermore, metformin altered the methylation signature in CA-MSCs, which prevented CA-MSC-driven chemoresistance in vitro.CONCLUSIONTranslational studies confirm an impact of metformin on EOC CSCs and suggest epigenetic change in the tumor stroma may drive the platinum sensitivity ex vivo. Consistent with this, metformin therapy was associated with better-than-expected overall survival, supporting the use of metformin in phase III studies.TRIAL REGISTRATIONClinicalTrials.gov NCT01579812.


Subject(s)
Drug Delivery Systems , Metformin/administration & dosage , Neoplastic Stem Cells , Ovarian Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Humans , Metformin/adverse effects , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Survival Rate
4.
J Vis Exp ; (149)2019 07 05.
Article in English | MEDLINE | ID: mdl-31329171

ABSTRACT

In this protocol, we outline the procedure for generation of tumor spheroids within 384-well hanging droplets to allow for high-throughput screening of anti-cancer therapeutics in a physiologically representative microenvironment. We outline the formation of patient derived cancer stem cell spheroids, as well as, the manipulation of these spheroids for thorough analysis following drug treatment. Specifically, we describe collection of spheroid morphology, proliferation, viability, drug toxicity, cell phenotype and cell localization data. This protocol focuses heavily on analysis techniques that are easily implemented using the 384-well hanging drop platform, making it ideal for high throughput drug screening. While we emphasize the importance of this model in ovarian cancer studies and cancer stem cell research, the 384-well platform is amenable to research of other cancer types and disease models, extending the utility of the platform to many fields. By improving the speed of personalized drug screening and the quality of screening results through easily implemented physiologically representative 3D cultures, this platform is predicted to aid in the development of new therapeutics and patient-specific treatment strategies, and thus have wide-reaching clinical impact.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplastic Stem Cells/drug effects , Spheroids, Cellular/drug effects , Drug Evaluation, Preclinical , Female , High-Throughput Screening Assays , Humans , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Spheroids, Cellular/pathology , Tumor Microenvironment/drug effects
5.
Cancers (Basel) ; 11(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323899

ABSTRACT

Ovarian cancer is an extremely lethal gynecologic disease; with the high-grade serous subtype predominantly associated with poor survival rates. Lack of early diagnostic biomarkers and prevalence of post-treatment recurrence, present substantial challenges in treating ovarian cancers. These cancers are also characterized by a high degree of heterogeneity and protracted metastasis, further complicating treatment. Within the ovarian tumor microenvironment, cancer stem-like cells and mechanical stimuli are two underappreciated key elements that play a crucial role in facilitating these outcomes. In this review article, we highlight their roles in modulating ovarian cancer metastasis. Specifically, we outline the clinical relevance of cancer stem-like cells, and challenges associated with their identification and characterization and summarize the ways in which they modulate ovarian cancer metastasis. Further, we review the mechanical cues in the ovarian tumor microenvironment, including, tension, shear, compression and matrix stiffness, that influence (cancer stem-like cells and) metastasis in ovarian cancers. Lastly, we outline the challenges associated with probing these important modulators of ovarian cancer metastasis and provide suggestions for incorporating these cues in basic biology and translational research focused on metastasis. We conclude that future studies on ovarian cancer metastasis will benefit from the careful consideration of mechanical stimuli and cancer stem cells, ultimately allowing for the development of more effective therapies.

6.
Neoplasia ; 21(8): 822-836, 2019 08.
Article in English | MEDLINE | ID: mdl-31299607

ABSTRACT

Intraperitoneal dissemination of ovarian cancers is preceded by the development of chemoresistant tumors with malignant ascites. Despite the high levels of chemoresistance and relapse observed in ovarian cancers, there are no in vitro models to understand the development of chemoresistance in situ. METHOD: We describe a highly integrated approach to establish an in vitro model of chemoresistance and stemness in ovarian cancer, using the 3D hanging drop spheroid platform. The model was established by serially passaging non-adherent spheroids. At each passage, the effectiveness of the model was evaluated via measures of proliferation, response to treatment with cisplatin and a novel ALDH1A inhibitor. Concomitantly, the expression and tumor initiating capacity of cancer stem-like cells (CSCs) was analyzed. RNA-seq was used to establish gene signatures associated with the evolution of tumorigenicity, and chemoresistance. Lastly, a mathematical model was developed to predict the emergence of CSCs during serial passaging of ovarian cancer spheroids. RESULTS: Our serial passage model demonstrated increased cellular proliferation, enriched CSCs, and emergence of a platinum resistant phenotype. In vivo tumor xenograft assays indicated that later passage spheroids were significantly more tumorigenic with higher CSCs, compared to early passage spheroids. RNA-seq revealed several gene signatures supporting the emergence of CSCs, chemoresistance, and malignant phenotypes, with links to poor clinical prognosis. Our mathematical model predicted the emergence of CSC populations within serially passaged spheroids, concurring with experimentally observed data. CONCLUSION: Our integrated approach illustrates the utility of the serial passage spheroid model for examining the emergence and development of chemoresistance in ovarian cancer in a controllable and reproducible format.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Animals , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Computational Biology/methods , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Flow Cytometry , Gene Expression Profiling , Humans , Mice , Models, Theoretical , Ovarian Neoplasms , Spheroids, Cellular , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
PLoS One ; 14(5): e0216564, 2019.
Article in English | MEDLINE | ID: mdl-31075118

ABSTRACT

Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor. As cancer bioengineers, it is our responsibility to create physiologic models that enable accurate understanding of the multi-dimensional structure, organization, and complex relationships in diverse tumor microenvironments. Such models can greatly expedite clinical discovery and translation by closely replicating the physiological conditions while maintaining high tunability and control of extrinsic factors. In this review, we discuss the current models that target key aspects of the tumor microenvironment and their role in cancer progression. In order to address sources of experimental variation and model limitations, we also make recommendations for methods to improve overall physiologic reproducibility, experimental repeatability, and rigor within the field. Improvements can be made through an enhanced emphasis on mathematical modeling, standardized in vitro model characterization, transparent reporting of methodologies, and designing experiments with physiological metrics. Taken together these considerations will enhance the relevance of in vitro tumor models, biological understanding, and accelerate treatment exploration ultimately leading to improved clinical outcomes. Moreover, the development of robust, user-friendly models that integrate important stimuli will allow for the in-depth study of tumors as they undergo progression from non-transformed primary cells to metastatic disease and facilitate translation to a wide variety of biological and clinical studies.


Subject(s)
Neoplasms/pathology , Tissue Engineering/methods , Disease Progression , Humans , Models, Biological , Precision Medicine , Tumor Microenvironment
9.
Clin Cancer Res ; 23(22): 6934-6945, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28814433

ABSTRACT

Purpose: Chemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform.Experimental Design: We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH+) CD133+ ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor. OvCSC spheroids were utilized to initiate tumors in immunodeficient mice. Drug responses to cisplatin and ALDH-targeting compound or JAK2 inhibitor determined whether the OvCSC population within the spheroids could be targeted. Cells that escaped therapy were isolated and used to initiate new spheroids and model tumor reemergence in a personalized manner.Results: OvCSC spheroids from different patients exhibited varying and personalized responses to chemotherapeutics. Xenografts were established from OvCSC spheroids, even with a single spheroid. Distinct responses to therapy were observed in distinct primary tumor xenografts similar to those observed in spheroids. Spheroids resistant to cisplatin/ALDH inhibitor therapy had persistent, albeit lower ALDH expression and complete loss of CD133 expression, whereas those resistant to cisplatin/JAK2 inhibitor therapy were enriched for ALDH+ cells.Conclusions: Our 3D hanging drop suspension platform can be used to propagate primary OvCSCs that represent individual patient tumors effectively by differentiating in vitro and initiating tumors in mice. Therefore, our platform can be used to study cancer stem cell biology and model tumor reemergence to identify new targeted therapeutics from an effective personalized medicine standpoint. Clin Cancer Res; 23(22); 6934-45. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Aldehyde Dehydrogenase , Animals , Cell Line, Tumor , Cisplatin/pharmacology , Disease Models, Animal , Female , Humans , Mice , Neoplasm Recurrence, Local , Ovarian Neoplasms/drug therapy , Precision Medicine , Spheroids, Cellular , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Adv Healthc Mater ; 5(17): 2153-60, 2016 09.
Article in English | MEDLINE | ID: mdl-27239785

ABSTRACT

A laser-based hydrogel degradation technique is developed that allows for local control over hydrogel porosity, fabrication of 3D vascular-derived, biomimetic, hydrogel-embedded microfluidic networks, and generation of two intertwining, yet independent, microfluidic networks in a single construct.


Subject(s)
Biomimetic Materials/chemistry , Hydrogels/chemistry , Lab-On-A-Chip Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...