Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(1): 34-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922183

ABSTRACT

Timelines are essential for visually communicating chronological narratives and reflecting on the personal and cultural significance of historical events. Existing visualization tools tend to support conventional linear representations, but fail to capture personal idiosyncratic conceptualizations of time. In response, we built TimeSplines, a visualization authoring tool that allows people to sketch multiple free-form temporal axes and populate them with heterogeneous, time-oriented data via incremental and lazy data binding. Authors can bend, compress, and expand temporal axes to emphasize or de-emphasize intervals based on their personal importance; they can also annotate the axes with text and figurative elements to convey contextual information. The results of two user studies show how people appropriate the concepts in TimeSplines to express their own conceptualization of time, while our curated gallery of images demonstrates the expressive potential of our approach.

2.
IEEE Trans Vis Comput Graph ; 28(1): 1139-1149, 2022 01.
Article in English | MEDLINE | ID: mdl-34587018

ABSTRACT

Prior research on communicating with visualization has focused on public presentation and asynchronous individual consumption, such as in the domain of journalism. The visualization research community knows comparatively little about synchronous and multimodal communication around data within organizations, from team meetings to executive briefings. We conducted two qualitative interview studies with individuals who prepare and deliver presentations about data to audiences in organizations. In contrast to prior work, we did not limit our interviews to those who self-identify as data analysts or data scientists. Both studies examined aspects of speaking about data with visual aids such as charts, dashboards, and tables. One study was a retrospective examination of current practices and difficulties, from which we identified three scenarios involving presentations of data. We describe these scenarios using an analogy to musical performance: small collaborative team meetings are akin to jam session, while more structured presentations can range from semi-improvisational performances among peers to formal recitals given to executives or customers. In our second study, we grounded the discussion around three design probes, each examining a different aspect of presenting data: the progressive reveal of visualization to direct attention and advance a narrative, visualization presentation controls that are hidden from the audience's view, and the coordination of a presenter's video with interactive visualization. Our distillation of interviewees' responses surfaced twelve themes, from ways of authoring presentations to creating accessible and engaging audience experiences.

3.
IEEE Trans Vis Comput Graph ; 28(1): 389-399, 2022 01.
Article in English | MEDLINE | ID: mdl-34587035

ABSTRACT

We introduce Diatoms, a technique that generates design inspiration for glyphs by sampling from palettes of mark shapes, encoding channels, and glyph scaffold shapes. Diatoms allows for a degree of randomness while respecting constraints imposed by columns in a data table: their data types and domains as well as semantic associations between columns as specified by the designer. We pair this generative design process with two forms of interactive design externalization that enable comparison and critique of the design alternatives. First, we incorporate a familiar small multiples configuration in which every data point is drawn according to a single glyph design, coupled with the ability to page between alternative glyph designs. Second, we propose a small permutables design gallery, in which a single data point is drawn according to each alternative glyph design, coupled with the ability to page between data points. We demonstrate an implementation of our technique as an extension to Tableau featuring three example palettes, and to better understand how Diatoms could fit into existing design workflows, we conducted interviews and chauffeured demos with 12 designers. Finally, we reflect on our process and the designers' reactions, discussing the potential of our technique in the context of visualization authoring systems. Ultimately, our approach to glyph design and comparison can kickstart and inspire visualization design, allowing for the serendipitous discovery of shape and channel combinations that would have otherwise been overlooked.


Subject(s)
Computer Graphics , Diatoms , Semantics
4.
IEEE Trans Vis Comput Graph ; 27(2): 689-699, 2021 02.
Article in English | MEDLINE | ID: mdl-33048727

ABSTRACT

Adapting dashboard design to different contexts of use is an open question in visualisation research. Dashboard designers often seek to strike a balance between dashboard adaptability and ease-of-use, and in hospitals challenges arise from the vast diversity of key metrics, data models and users involved at different organizational levels. In this design study, we present QualDash, a dashboard generation engine that allows for the dynamic configuration and deployment of visualisation dashboards for healthcare quality improvement (QI). We present a rigorous task analysis based on interviews with healthcare professionals, a co-design workshop and a series of one-on-one meetings with front line analysts. From these activities we define a metric card metaphor as a unit of visual analysis in healthcare QI, using this concept as a building block for generating highly adaptable dashboards, and leading to the design of a Metric Specification Structure (MSS). Each MSS is a JSON structure which enables dashboard authors to concisely configure unit-specific variants of a metric card, while offloading common patterns that are shared across cards to be preset by the engine. We reflect on deploying and iterating the design of OualDash in cardiology wards and pediatric intensive care units of five NHS hospitals. Finally, we report evaluation results that demonstrate the adaptability, ease-of-use and usefulness of QualDash in a real-world scenario.


Subject(s)
Computer Graphics , Quality Improvement , Child , Delivery of Health Care , Humans
5.
IEEE Trans Vis Comput Graph ; 26(1): 461-471, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31442976

ABSTRACT

An emerging generation of visualization authoring systems support expressive information visualization without textual programming. As they vary in their visualization models, system architectures, and user interfaces, it is challenging to directly compare these systems using traditional evaluative methods. Recognizing the value of contextualizing our decisions in the broader design space, we present critical reflections on three systems we developed -Lyra, Data Illustrator, and Charticulator. This paper surfaces knowledge that would have been daunting within the constituent papers of these three systems. We compare and contrast their (previously unmentioned) limitations and trade-offs between expressivity and learnability. We also reflect on common assumptions that we made during the development of our systems, thereby informing future research directions in visualization authoring systems.

6.
IEEE Trans Vis Comput Graph ; 26(1): 364-374, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31425109

ABSTRACT

We compare the efficacy of animated and small multiples variants of scatterplots on mobile phones for comparing trends in multivariate datasets. Visualization is increasingly prevalent in mobile applications and mobile-first websites, yet there is little prior visualization research dedicated to small displays. In this paper, we build upon previous experimental research carried out on larger displays that assessed animated and non-animated variants of scatterplots. Incorporating similar experimental stimuli and tasks, we conducted an experiment where 96 crowdworker participants performed nine trend comparison tasks using their mobile phones. We found that those using a small multiples design consistently completed tasks in less time, albeit with slightly less confidence than those using an animated design. The accuracy results were more task-dependent, and we further interpret our results according to the characteristics of the individual tasks, with a specific focus on the trajectories of target and distractor data items in each task. We identify cases that appear to favor either animation or small multiples, providing new questions for further experimental research and implications for visualization design on mobile devices. Lastly, we provide a reflection on our evaluation methodology.

7.
IEEE Trans Vis Comput Graph ; 25(1): 619-629, 2019 01.
Article in English | MEDLINE | ID: mdl-30137001

ABSTRACT

In the first crowdsourced visualization experiment conducted exclusively on mobile phones, we compare approaches to visualizing ranges over time on small displays. People routinely consume such data via a mobile phone, from temperatures in weather forecasting apps to sleep and blood pressure readings in personal health apps. However, we lack guidance on how to effectively visualize ranges on small displays in the context of different value retrieval and comparison tasks, or with respect to different data characteristics such as periodicity, seasonality, or the cardinality of ranges. Central to our experiment is a comparison between two ways to lay out ranges: a more conventional linear layout strikes a balance between quantitative and chronological scale resolution, while a less conventional radial layout emphasizes the cyclicality of time and may prioritize discrimination between values at its periphery. With results from 87 crowd workers, we found that while participants completed tasks more quickly with linear layouts than with radial ones, there were few differences in terms of error rate between layout conditions. We also found that participants performed similarly with both layouts in tasks that involved comparing superimposed observed and average ranges.

8.
Article in English | MEDLINE | ID: mdl-30136992

ABSTRACT

We present Charticulator, an interactive authoring tool that enables the creation of bespoke and reusable chart layouts. Charticulator is our response to most existing chart construction interfaces that require authors to choose from predefined chart layouts, thereby precluding the construction of novel charts. In contrast, Charticulator transforms a chart specification into mathematical layout constraints and automatically computes a set of layout attributes using a constraint-solving algorithm to realize the chart. It allows for the articulation of compound marks or glyphs as well as links between these glyphs, all without requiring any coding or knowledge of constraint satisfaction. Furthermore, thanks to the constraint-based layout approach, Charticulator can export chart designs into reusable templates that can be imported into other visualization tools. In addition to describing Charticulator's conceptual framework and design, we present three forms of evaluation: a gallery to illustrate its expressiveness, a user study to verify its usability, and a click-count comparison between Charticulator and three existing tools. Finally, we discuss the limitations and potentials of Charticulator as well as directions for future research. Charticulator is available with its source code at https://charticulator.com.

9.
IEEE Trans Vis Comput Graph ; 23(9): 2151-2164, 2017 09.
Article in English | MEDLINE | ID: mdl-28113509

ABSTRACT

There are many ways to visualize event sequences as timelines. In a storytelling context where the intent is to convey multiple narrative points, a richer set of timeline designs may be more appropriate than the narrow range that has been used for exploratory data analysis by the research community. Informed by a survey of 263 timelines, we present a design space for storytelling with timelines that balances expressiveness and effectiveness, identifying 14 design choices characterized by three dimensions: representation, scale, and layout. Twenty combinations of these choices are viable timeline designs that can be matched to different narrative points, while smooth animated transitions between narrative points allow for the presentation of a cohesive story, an important aspect of both interactive storytelling and data videos. We further validate this design space by realizing the full set of viable timeline designs and transitions in a proof-of-concept sandbox implementation that we used to produce seven example timeline stories. Ultimately, this work is intended to inform and inspire the design of future tools for storytelling with timelines.

10.
IEEE Trans Vis Comput Graph ; 22(1): 449-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26336126

ABSTRACT

The energy performance of large building portfolios is challenging to analyze and monitor, as current analysis tools are not scalable or they present derived and aggregated data at too coarse of a level. We conducted a visualization design study, beginning with a thorough work domain analysis and a characterization of data and task abstractions. We describe generalizable visual encoding design choices for time-oriented data framed in terms of matches and mismatches, as well as considerations for workflow design. Our designs address several research questions pertaining to scalability, view coordination, and the inappropriateness of line charts for derived and aggregated data due to a combination of data semantics and domain convention. We also present guidelines relating to familiarity and trust, as well as methodological considerations for visualization design studies. Our designs were adopted by our collaborators and incorporated into the design of an energy analysis software application that will be deployed to tens of thousands of energy workers in their client base.


Subject(s)
Computer Graphics , Energy Transfer , Research Design , Software , Construction Materials , Workflow
11.
Alzheimer Dis Assoc Disord ; 29(3): 213-21, 2015.
Article in English | MEDLINE | ID: mdl-25187218

ABSTRACT

INTRODUCTION: Cognitive Testing on Computer (C-TOC) is a novel computer-based test battery developed to improve both usability and validity in the computerized assessment of cognitive function in older adults. METHODS: C-TOC's usability was evaluated concurrently with its iterative development to version 4 in subjects with and without cognitive impairment, and health professional advisors representing different ethnocultural groups. C-TOC version 4 was then validated against neuropsychological tests (NPTs), and by comparing performance scores of subjects with normal cognition, Cognitive Impairment Not Dementia (CIND) and Alzheimer disease. C-TOC's language tests were validated in subjects with aphasic disorders. RESULTS: The most important usability issue that emerged from consultations with 27 older adults and with 8 cultural advisors was the test-takers' understanding of the task, particularly executive function tasks. User interface features did not pose significant problems. C-TOC version 4 tests correlated with comparator NPT (r=0.4 to 0.7). C-TOC test scores were normal (n=16)>CIND (n=16)>Alzheimer disease (n=6). All normal/CIND NPT performance differences were detected on C-TOC. Low computer knowledge adversely affected test performance, particularly in CIND. C-TOC detected impairments in aphasic disorders (n=11). DISCUSSION: In general, C-TOC had good validity in detecting cognitive impairment. Ensuring test-takers' understanding of the tasks, and considering their computer knowledge appear important steps towards C-TOC's implementation.


Subject(s)
Cognition Disorders/diagnosis , Cognition/physiology , Dementia/diagnosis , Aged , Aged, 80 and over , Aging , Cognition Disorders/physiopathology , Dementia/physiopathology , Early Diagnosis , Executive Function/physiology , Female , Humans , Male , Middle Aged , Neuropsychological Tests
12.
IEEE Trans Vis Comput Graph ; 20(12): 2271-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356941

ABSTRACT

For an investigative journalist, a large collection of documents obtained from a Freedom of Information Act request or a leak is both a blessing and a curse: such material may contain multiple newsworthy stories, but it can be difficult and time consuming to find relevant documents. Standard text search is useful, but even if the search target is known it may not be possible to formulate an effective query. In addition, summarization is an important non-search task. We present Overview, an application for the systematic analysis of large document collections based on document clustering, visualization, and tagging. This work contributes to the small set of design studies which evaluate a visualization system "in the wild", and we report on six case studies where Overview was voluntarily used by self-initiated journalists to produce published stories. We find that the frequently-used language of "exploring" a document collection is both too vague and too narrow to capture how journalists actually used our application. Our iterative process, including multiple rounds of deployment and observations of real world usage, led to a much more specific characterization of tasks. We analyze and justify the visual encoding and interaction techniques used in Overview's design with respect to our final task abstractions, and propose generalizable lessons for visualization design methodology.


Subject(s)
Computer Graphics , Data Mining/methods , Journalism , Cluster Analysis , Humans , Models, Theoretical
13.
IEEE Trans Vis Comput Graph ; 19(12): 2376-85, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051804

ABSTRACT

The considerable previous work characterizing visualization usage has focused on low-level tasks or interactions and high-level tasks, leaving a gap between them that is not addressed. This gap leads to a lack of distinction between the ends and means of a task, limiting the potential for rigorous analysis. We contribute a multi-level typology of visualization tasks to address this gap, distinguishing why and how a visualization task is performed, as well as what the task inputs and outputs are. Our typology allows complex tasks to be expressed as sequences of interdependent simpler tasks, resulting in concise and flexible descriptions for tasks of varying complexity and scope. It provides abstract rather than domain-specific descriptions of tasks, so that useful comparisons can be made between visualization systems targeted at different application domains. This descriptive power supports a level of analysis required for the generation of new designs, by guiding the translation of domain-specific problems into abstract tasks, and for the qualitative evaluation of visualization usage. We demonstrate the benefits of our approach in a detailed case study, comparing task descriptions from our typology to those derived from related work. We also discuss the similarities and differences between our typology and over two dozen extant classification systems and theoretical frameworks from the literatures of visualization, human-computer interaction, information retrieval, communications, and cartography.


Subject(s)
Algorithms , Artificial Intelligence , Task Performance and Analysis , User-Computer Interface , Visual Perception/physiology , Computer Simulation , Humans , Models, Theoretical , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...