Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38684470

ABSTRACT

In this study, we evaluated the antimicrobial activity of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against seven Acinetobacter baumannii strains, the majority of which were clinically relevant carbapenem-resistant A. baumannii strains. We observed the inhibitory activity of 18 (out of 114) sponge-isolated bacterial strains against all A. baumanii strains using medium-throughput solid agar overlay assays. These inhibitory strains belonged to the genera Lactococcus, Pseudomonas, and Vagococcus. In addition, this antimicrobial activity was validated through a liquid co-cultivation challenge using an inhibitory strain of each genus and a green fluorescent protein-tagged A. baumanii strain. Fluorescence measurements indicated that the growth of A. baumanii was inhibited by the sponge isolates. In addition, the inability of A. baumanii to grow after spreading the co-cultures on solid medium allowed us to characterize the activity of the sponge isolates as bactericidal. In conclusion, this study demonstrates that marine sponges are a reservoir of bacteria that deserves to be tapped for antibiotic discovery against A. baumanii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Microbial Sensitivity Tests , Porifera , Animals , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/isolation & purification , Porifera/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Antibiosis
3.
ISME J ; 16(5): 1473-1477, 2022 05.
Article in English | MEDLINE | ID: mdl-34949784

ABSTRACT

We identify a new mechanism mediating capsule production and virulence in the WHO and CDC priority ESKAPE pathogen Acinetobacter baumannii. Non-capsulated and avirulent bacteria can revert into a capsulated and virulent state upon scarless excision of an ISAba13 insertion sequence under stress conditions. Reversion events fully restore capsule production and in vivo virulence. This increases our knowledge about A. baumannii genome dynamics, and the regulation of capsule production, virulence and resistance.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , DNA Transposable Elements , Humans , Virulence/genetics , Virulence Factors/genetics
4.
Front Cell Infect Microbiol ; 11: 789672, 2021.
Article in English | MEDLINE | ID: mdl-35141168

ABSTRACT

OBJECTIVES: The spread of antibiotic resistant bacteria is an important threat for human health. Acinetobacter baumannii bacteria impose such a major issue, as multidrug- to pandrug-resistant strains have been isolated, rendering some infections untreatable. In this context, carbapenem-resistant A. baumannii bacteria were ranked as top priority by both WHO and CDC. In addition, A. baumannii bacteria survive in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is very challenging because of the requirement of drug target conservation amongst the different strains. Here, we screened a chemical library to identify compounds active against several reference strains and carbapenem-resistant A. baumannii bacteria. METHODS: A repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining the IC50 and testing the activity on 43 modern clinical A. baumannii isolates, amongst which 40 are carbapenem-resistant. RESULTS: The repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proves to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 µM. In addition, HDC1 impairs growth of 43 clinical A. baumannii isolates. CONCLUSIONS: We identified a compound with inhibitory activity on all tested strains, including carbapenem-resistant clinical A. baumannii isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Harmine/pharmacology , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...