Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611550

ABSTRACT

Changes in land-use practices have been a central element of human adaptation to Holocene climate change. Many practices that result in the short-term stabilization of socio-natural systems, however, have longer-term, unanticipated consequences that present cascading challenges for human subsistence strategies and opportunities for subsequent adaptations. Investigating complex sequences of interaction between climate change and human land-use in the past-rather than short-term causes and effects-is therefore essential for understanding processes of adaptation and change, but this approach has been stymied by a lack of suitably-scaled paleoecological data. Through a high-resolution paleoecological analysis, we provide a 7000-year history of changing climate and land management around Lake Acopia in the Andes of southern Peru. We identify evidence of the onset of pastoralism, maize cultivation, and possibly cultivation of quinoa and potatoes to form a complex agrarian landscape by c. 4300 years ago. Cumulative interactive climate-cultivation effects resulting in erosion ended abruptly c. 2300 years ago. After this time, reduced sedimentation rates are attributed to the construction and use of agricultural terraces within the catchment of the lake. These results provide new insights into the role of humans in the manufacture of Andean landscapes and the incremental, adaptive processes through which land-use practices take shape.

2.
Ecol Evol ; 14(3): e11130, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529028

ABSTRACT

Single-visit surveys of plots are often used for estimating the abundance of species of conservation concern. Less-than-perfect availability and detection of individuals can bias estimates if not properly accounted for. We developed field methods and a Bayesian model that accounts for availability and detection bias during single-visit visual plot surveys. We used simulated data to test the accuracy of the method under a realistic range of generating parameters and applied the method to Florida's east coast diamondback terrapin in the Indian River Lagoon system, where they were formerly common but have declined in recent decades. Simulations demonstrated that the method produces unbiased abundance estimates under a wide range of conditions that can be expected to occur in such surveys. Using terrapins as an example we show how to include covariates and random effects to improve estimates and learn about species-habitat relationships. Our method requires only counting individuals during short replicate surveys rather than keeping track of individual identity and is simple to implement in a variety of point count settings when individuals may be temporarily unavailable for observation. We provide examples in R and JAGS for implementing the model and to simulate and evaluate data to validate the application of the method under other study conditions.

3.
Conserv Biol ; 31(1): 67-75, 2017 02.
Article in English | MEDLINE | ID: mdl-27346673

ABSTRACT

Seagrasses are the foundation of many coastal ecosystems and are in global decline because of anthropogenic impacts. For the Indian River Lagoon (Florida, U.S.A.), we developed competing multistate statistical models to quantify how environmental factors (surrounding land use, water depth, and time [year]) influenced the variability of seagrass state dynamics from 2003 to 2014 while accounting for time-specific detection probabilities that quantified our ability to determine seagrass state at particular locations and times. We classified seagrass states (presence or absence) at 764 points with geographic information system maps for years when seagrass maps were available and with aerial photographs when seagrass maps were not available. We used 4 categories (all conservation, mostly conservation, mostly urban, urban) to describe surrounding land use within sections of lagoonal waters, usually demarcated by land features that constricted these waters. The best models predicted that surrounding land use, depth, and year would affect transition and detection probabilities. Sections of the lagoon bordered by urban areas had the least stable seagrass beds and lowest detection probabilities, especially after a catastrophic seagrass die-off linked to an algal bloom. Sections of the lagoon bordered by conservation lands had the most stable seagrass beds, which supports watershed conservation efforts. Our results show that a multistate approach can empirically estimate state-transition probabilities as functions of environmental factors while accounting for state-dependent differences in seagrass detection probabilities as part of the overall statistical inference procedure.


Subject(s)
Conservation of Natural Resources , Eutrophication , Ecosystem , Florida , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...