Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766113

ABSTRACT

Importance: Positron emission tomography (PET) biomarkers are the gold standard for detection of Alzheimer amyloid and tau in vivo . Such imaging can identify cognitively unimpaired (CU) individuals who will subsequently develop cognitive impartment (CI). Plasma biomarkers would be more practical than PET or even cerebrospinal fluid (CSF) assays in clinical settings. Objective: Assess the prognostic accuracy of plasma p-tau217 in comparison to CSF and PET biomarkers for predicting the clinical progression from CU to CI. Design: In a cohort of elderly at high risk of developing Alzheimer's dementia (AD), we measured the proportion of CU individuals who developed CI, as predicted by Aß (A+) and/or tau (T+) biomarker assessment from plasma, CSF, and PET. Results from each method were compared with (A-T-) reference individuals. Data were analyzed from June 2023 to April 2024. Setting: Longitudinal observational cohort. Participants: Some 228 participants from the PREVENT-AD cohort were CU at the time of biomarker assessment and had 1 - 10 years of follow-up. Plasma was available from 215 participants, CSF from 159, and amyloid- and tau-PET from 155. Ninety-three participants had assessment using all three methods (main group of interest). Progression to CI was determined by clinical consensus among physicians and neuropsychologists who were blind to plasma, CSF, PET, and MRI findings, as well as APOE genotype. Exposures: Plasma Aß 42/40 was measured using IP-MS; CSF Aß 42/40 using Lumipulse; plasma and CSF p-tau217 using UGOT assay. Aß-PET employed the 18 F-NAV4694 ligand, and tau-PET used 18 F-flortaucipir. Main Outcome: Prognostic accuracy of plasma, CSF, and PET biomarkers for predicting the development of CI in CU individuals. Results: Cox proportional hazard models indicated a greater progression rate in all A+T+ groups compared to A-T-groups (HR = 6.61 [95% CI = 2.06 - 21.17] for plasma, 3.62 [1.49 - 8.81] for CSF and 9.24 [2.34 - 36.43] for PET). The A-T+ groups were small, but also characterized with individuals who developed CI. Plasma biomarkers identified about five times more T+ than PET. Conclusion and relevance: Plasma p-tau217 assessment is a practical method for identification of persons who will develop cognitive impairment up to 10 years later. Key Points: Question: Can plasma p-tau217 serve as a prognostic indicator for identifying cognitively unimpaired (CU) individuals at risk of developing cognitive impairments (CI)?Findings: In a longitudinal cohort of CU individuals with a family history of sporadic AD, almost all individuals with abnormal plasma p-tau217 concentrations developed CI within 10 years, regardless of plasma amyloid levels. Similar findings were obtained with CSF p-tau217 and tau-PET. Fluid p-tau217 biomarkers had the main advantage over PET of identifying five times more participants with elevated tau.Meaning: Elevated plasma p-tau217 levels in CU individuals strongly indicate future clinical progression.

2.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Article in English | MEDLINE | ID: mdl-38578887

ABSTRACT

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , Apolipoproteins/genetics , Apolipoproteins E/metabolism , Apolipoproteins B , Cholesterol , Contactins
3.
Sleep ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526098

ABSTRACT

STUDY OBJECTIVES: While short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS: We tested 203 dementia-free participants (68.5±5.4y/o, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participant's age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, sleep duration) and general profiles (sleep fragmentation, phase delay, hypersomnia). CSF inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS: Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep, later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, global score). Interactions analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS: Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.

4.
Alzheimers Dement (Amst) ; 16(1): e12521, 2024.
Article in English | MEDLINE | ID: mdl-38371359

ABSTRACT

INTRODUCTION: Measuring day-to-day sleep variability might reveal unstable sleep-wake cycles reflecting neurodegenerative processes. We evaluated the association between Alzheimer's disease (AD) fluid biomarkers with day-to-day sleep variability. METHODS: In the PREVENT-AD cohort, 203 dementia-free participants (age: 68.3 ± 5.4; 78 males) with a parental history of sporadic AD were tested with actigraphy and fluid biomarkers. Day-to-day variability (standard deviations over a week) was assessed for sleep midpoint, duration, efficiency, and nighttime activity count. RESULTS: Lower cerebrospinal fluid (CSF) ApoE, higher CSF p-tau181/amyloid-ß (Aß)42, and higher plasma p-tau231/Aß42 were associated with higher variability of sleep midpoint, sleep duration, and/or activity count. The associations between fluid biomarkers with greater sleep duration variability were especially observed in those that carried the APOE4 allele, mild cognitive impairment converters, or those with gray matter atrophy. DISCUSSION: Day-to-day sleep variability were associated with biomarkers of AD in at-risk individuals, suggesting that unstable sleep promotes neurodegeneration or, conversely, that AD neuropathology disrupts sleep-wake cycles.

5.
Brain Commun ; 6(1): fcae031, 2024.
Article in English | MEDLINE | ID: mdl-38410618

ABSTRACT

The accumulation of tau abnormality in sporadic Alzheimer's disease is believed typically to follow neuropathologically defined Braak staging. Recent in-vivo PET evidence challenges this belief, however, as accumulation patterns for tau appear heterogeneous among individuals with varying clinical expressions of Alzheimer's disease. We, therefore, sought a better understanding of the spatial distribution of tau in the preclinical and clinical phases of sporadic Alzheimer's disease and its association with cognitive decline. Longitudinal tau-PET data (1370 scans) from 832 participants (463 cognitively unimpaired, 277 with mild cognitive impairment and 92 with Alzheimer's disease dementia) were obtained from the Alzheimer's Disease Neuroimaging Initiative. Among these, we defined thresholds of abnormal tau deposition in 70 brain regions from the Desikan atlas, and for each group of regions characteristic of Braak staging. We summed each scan's number of regions with abnormal tau deposition to form a spatial extent index. We then examined patterns of tau pathology cross-sectionally and longitudinally and assessed their heterogeneity. Finally, we compared our spatial extent index of tau uptake with a temporal meta-region of interest-a commonly used proxy of tau burden-assessing their association with cognitive scores and clinical progression. More than 80% of amyloid-beta positive participants across diagnostic groups followed typical Braak staging, both cross-sectionally and longitudinally. Within each Braak stage, however, the pattern of abnormality demonstrated significant heterogeneity such that the overlap of abnormal regions across participants averaged less than 50%, particularly in persons with mild cognitive impairment. Accumulation of tau progressed more rapidly among cognitively unimpaired and participants with mild cognitive impairment (1.2 newly abnormal regions per year) compared to participants with Alzheimer's disease dementia (less than 1 newly abnormal region per year). Comparing the association of tau pathology and cognitive performance our spatial extent index was superior to the temporal meta-region of interest for identifying associations with memory in cognitively unimpaired individuals and explained more variance for measures of executive function in patients with mild cognitive impairments and Alzheimer's disease dementia. Thus, while participants broadly followed Braak stages, significant individual regional heterogeneity of tau binding was observed at each clinical stage. Progression of the spatial extent of tau pathology appears to be fastest in cognitively unimpaired and persons with mild cognitive impairment. Exploring the spatial distribution of tau deposits throughout the entire brain may uncover further pathological variations and their correlation with cognitive impairments.

6.
Biol Psychiatry ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37689129

ABSTRACT

Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.

7.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333413

ABSTRACT

The spread of tau abnormality in sporadic Alzheimer's disease is believed typically to follow neuropathologically defined Braak staging. Recent in-vivo positron emission tomography (PET) evidence challenges this belief, however, as spreading patterns for tau appear heterogenous among individuals with varying clinical expression of Alzheimer's disease. We therefore sought better understanding of the spatial distribution of tau in the preclinical and clinical phases of sporadic Alzheimer's disease and its association with cognitive decline. Longitudinal tau-PET data (1,370 scans) from 832 participants (463 cognitively unimpaired, 277 with mild cognitive impairment (MCI) and 92 with Alzheimer's disease dementia) were obtained from the Alzheimer's Disease Neuroimaging Initiative. Among these, we defined thresholds of abnormal tau deposition in 70 brain regions from the Desikan atlas, and for each group of regions characteristic of Braak staging. We summed each scan's number of regions with abnormal tau deposition to form a spatial extent index. We then examined patterns of tau pathology cross-sectionally and longitudinally and assessed their heterogeneity. Finally, we compared our spatial extent index of tau uptake with a temporal meta region of interest-a commonly used proxy of tau burden-assessing their association with cognitive scores and clinical progression. More than 80% of amyloid-beta positive participants across diagnostic groups followed typical Braak staging, both cross-sectionally and longitudinally. Within each Braak stage, however, the pattern of abnormality demonstrated significant heterogeneity such that overlap of abnormal regions across participants averaged less than 50%. The annual rate of change in number of abnormal tau-PET regions was similar among individuals without cognitive impairment and those with Alzheimer's disease dementia. Spread of disease progressed more rapidly, however, among participants with MCI. The latter's change on our spatial extent measure amounted to 2.5 newly abnormal regions per year, as contrasted with 1 region/year among the other groups. Comparing the association of tau pathology and cognitive performance in MCI and Alzheimer's disease dementia, our spatial extent index was superior to the temporal meta-ROI for measures of executive function. Thus, while participants broadly followed Braak stages, significant individual regional heterogeneity of tau binding was observed at each clinical stage. Progression of spatial extent of tau pathology appears to be fastest in persons with MCI. Exploring the spatial distribution of tau deposits throughout the entire brain may uncover further pathological variations and their correlation with impairments in cognitive functions beyond memory.

8.
Alzheimers Dement ; 19(12): 5620-5631, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37294682

ABSTRACT

INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aß)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aß and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aß42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aß-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E Îµ4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aß42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.


Subject(s)
Alzheimer Disease , Male , Female , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Glial Fibrillary Acidic Protein , Plasma , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , tau Proteins
9.
Biol Psychiatry Glob Open Sci ; 3(1): 130-138, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36712573

ABSTRACT

Background: Mindfulness, defined as nonjudgmental awareness of the present moment, has been associated with an array of mental and physical health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk for AD dementia. Methods: Measures of trait mindfulness, longitudinal cognitive assessments, and amyloid-ß (Aß) and tau positron emission tomography scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD) observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and 1) cognitive decline, 2) Aß, and 3) tau. Results: Higher levels of mindful nonjudgment, describing, and nonreactivity were associated with less cognitive decline in attention, global cognition, and immediate and delayed memory. Higher levels of mindful nonjudgment and nonreactivity were related to less Aß positron emission tomography signal in bilateral medial and lateral temporoparietal and frontal regions. Higher levels of mindful acting with awareness, describing, nonjudgment, and nonreactivity were associated with less tau positron emission tomography signal in bilateral medial and lateral temporal regions. Conclusions: Trait mindfulness was associated with less cognitive decline and less Aß and tau in the brain in older adults at risk for AD dementia. Longitudinal studies examining the temporal relationship between trait mindfulness and AD markers, along with mindfulness intervention studies, will be important for further clarifying the potential protective benefits of mindfulness on AD risk.

10.
Sci Adv ; 8(46): eabo6764, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36399579

ABSTRACT

Alzheimer's disease (AD) is a heterogeneous disorder with abnormalities in multiple biological domains. In an advanced machine learning analysis of postmortem brain and in vivo blood multi-omics molecular data (N = 1863), we integrated epigenomic, transcriptomic, proteomic, and metabolomic profiles into a multilevel biological AD taxonomy. We obtained a personalized multilevel molecular index of AD dementia progression that predicts severity of neuropathologies, and identified three robust molecular-based subtypes that explain much of the pathologic and clinical heterogeneity of AD. These subtypes present distinct patterns of alteration in DNA methylation, RNA, proteins, and metabolites, identifiable in the brain and subsequently in blood. In addition, the genetic variations that predispose to the various AD subtypes in brain predict distinct spatial patterns of alteration in cell types, suggesting a unique influence of each putative AD variant on neuropathological mechanisms. These observations support that an individually tailored multi-omics molecular taxonomy of AD may represent distinct targets for preventive or treatment interventions.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Epigenomics , Transcriptome , Proteomics , Disease Progression
11.
JAMA Neurol ; 79(10): 1025-1035, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35994280

ABSTRACT

Importance: Preventive trials of anti-amyloid agents might preferably recruit persons showing earliest biologically relevant ß-amyloid (Aß) binding on positron emission tomography (PET). Objective: To investigate the timing at which Aß-PET binding starts showing associations with other markers of Alzheimer disease. Design, Setting, and Participants: This longitudinal multicentric cohort study included 3 independent cohorts: Presymptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease (PREVENT-AD) (data collected from 2012-2020), Alzheimer Disease Neuroimaging Initiative (ADNI) (data collected from 2005-2019), and Harvard Aging Brain Study (HABS) (data collected from 2011-2019). In a 3-tiered categorization of Aß-PET binding spatial extent, individuals were assigned as having widespread Aß deposition if they showed positive signal throughout a designated set of brain regions prone to early Aß accumulation. Those with binding in some but not all were categorized as having regional deposition, while those who failed to show any criterion Aß signal were considered Aß-negative. All participants who were cognitively unimpaired at their first Aß PET scan. Main Outcomes and Measures: Differences in cerebrospinal fluid (CSF), genetics, tau-PET burden, and cognitive decline. Results: A total of 817 participants were included, including 129 from the PREVENT-AD cohort (mean [SD] age, 63.5 [4.7] years; 33 [26%] male; 126 [98%] White), 400 from ADNI (mean [SD] age, 73.6 [5.8] years; 190 [47%] male; 10 [5%] Hispanic, 338 [91%] White), and 288 from HABS (mean [SD] age, 73.7 [6.2] years; 117 [40%] male; 234 [81%] White). Compared with Aß-negative persons, those with regional Aß binding showed proportionately more APOE ε4 carriers (18 [64%] vs 22 [27%] in PREVENT-AD and 34 [31%] vs 38 [19%] in ADNI), reduced CSF Aß1-42 levels (F = 24 and 71), and greater longitudinal Aß-PET accumulation (significant ß = 0.019 to 0.056). Participants with widespread amyloid binding further exhibited notable cognitive decline (significant ß = -0.014 to -0.08), greater CSF phosphorylated tau181 (F = 5 and 27), and tau-PET binding (all F > 7.55). Using each cohort's specified dichotomous threshold for Aß positivity or a visual read classification, most participants (56% to 100%, depending on classification method and cohort) with regional Aß would have been classified Aß-negative. Conclusions and Relevance: Regional Aß binding appears to be biologically relevant and participants at this stage remain relatively free from CSF phosphorylated tau181, tau-PET binding, and related cognitive decline, making them ideal targets for anti-amyloid agents. Most of these individuals would be classified as negative based on classical thresholds of Aß positivity.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Apolipoprotein E4 , Biomarkers/cerebrospinal fluid , Cognition , Cognitive Dysfunction/diagnostic imaging , Cohort Studies , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods , tau Proteins/metabolism
12.
JAMA Neurol ; 79(10): 975-985, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35907254

ABSTRACT

Importance: National Institute on Aging-Alzheimer's Association (NIA-AA) workgroups have proposed biological research criteria intended to identify individuals with preclinical Alzheimer disease (AD). Objective: To assess the clinical value of these biological criteria to identify older individuals without cognitive impairment who are at near-term risk of developing symptomatic AD. Design, Setting, and Participants: This longitudinal cohort study used data from 4 independent population-based cohorts (PREVENT-AD, HABS, AIBL, and Knight ADRC) collected between 2003 and 2021. Participants were older adults without cognitive impairment with 1 year or more of clinical observation after amyloid ß and tau positron emission tomography (PET). Median clinical follow-up after PET ranged from 1.94 to 3.66 years. Exposures: Based on binary assessment of global amyloid burden (A) and a composite temporal region of tau PET uptake (T), participants were stratified into 4 groups (A+T+, A+T-, A-T+, A-T-). Presence (+) or absence (-) of neurodegeneration (N) was assessed using temporal cortical thickness. Main Outcomes and Measures: Each cohort was analyzed separately. Primary outcome was clinical progression to mild cognitive impairment (MCI), identified by a Clinical Dementia Rating score of 0.5 or greater in Knight ADRC and by consensus committee review in the other cohorts. Clinical raters were blind to imaging, genetic, and fluid biomarker data. A secondary outcome was cognitive decline, based on a slope greater than 1.5 SD below the mean of an independent subsample of individuals without cognitive impairment. Outcomes were compared across the biomarker groups. Results: Among 580 participants (PREVENT-AD, 128; HABS, 153; AIBL, 48; Knight ADRC, 251), mean (SD) age ranged from 67 (5) to 76 (6) years across cohorts, with between 55% (137/251) and 74% (95/128) female participants. Across cohorts, 33% to 83% of A+T+ participants progressed to MCI during follow-up (mean progression time, 2-2.72 years), compared with less than 20% of participants in other biomarker groups. Progression further increased to 43% to 100% when restricted to A+T+(N+) individuals. Cox proportional hazard ratios for progression to MCI in the A+T+ group vs other biomarker groups were all 5 or greater. Many A+T+ nonprogressors also showed longitudinal cognitive decline, while cognitive trajectories in other groups remained predominantly stable. Conclusions and Relevance: The clinical prognostic value of NIA-AA research criteria was confirmed in 4 independent cohorts, with most A+T+(N+) older individuals without cognitive impairment developing AD symptoms within 2 to 3 years.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Female , Humans , Longitudinal Studies , Middle Aged , Positron-Emission Tomography , tau Proteins
14.
Ann Neurol ; 91(4): 548-560, 2022 04.
Article in English | MEDLINE | ID: mdl-35084051

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate novel plasma p-tau231 and p-tau181, as well as Aß40 and Aß42 assays as indicators of tau and Aß pathologies measured with positron emission tomography (PET), and their association with cognitive change, in cognitively unimpaired older adults. METHODS: In a cohort of 244 older adults at risk of Alzheimer's disease (AD) owing to a family history of AD dementia, we measured single molecule array (Simoa)-based plasma tau biomarkers (p-tau231 and p-tau181), Aß40 and Aß42 with immunoprecipitation mass spectrometry, and Simoa neurofilament light (NfL). A subset of 129 participants underwent amyloid-ß (18 F-NAV4694) and tau (18 F-flortaucipir) PET assessments. We investigated plasma biomarker associations with Aß and tau PET at the global and voxel level and tested plasma biomarker combinations for improved detection of Aß-PET positivity. We also investigated associations with 8-year cognitive change. RESULTS: Plasma p-tau biomarkers correlated with flortaucipir binding in medial temporal, parietal, and inferior temporal regions. P-tau231 showed further associations in lateral parietal and occipital cortices. Plasma Aß42/40 explained more variance in global Aß-PET binding than Aß42 alone. P-tau231 also showed strong and widespread associations with cortical Aß-PET binding. Combining Aß42/40 with p-tau231 or p-tau181 allowed for good distinction between Aß-negative and -positive participants (area under the receiver operating characteristic curve [AUC] range = 0.81-0.86). Individuals with low plasma Aß42/40 and high p-tau experienced faster cognitive decline. INTERPRETATION: Plasma p-tau231 showed more robust associations with PET biomarkers than p-tau181 in presymptomatic individuals. The combination of p-tau and Aß42/40 biomarkers detected early AD pathology and cognitive decline. Such markers could be used as prescreening tools to reduce the cost of prevention trials. ANN NEUROL 2022;91:548-560.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , tau Proteins , Aged , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Cognition , Cognitive Dysfunction/diagnostic imaging , Humans , Positron-Emission Tomography , tau Proteins/metabolism
15.
Alzheimers Dement ; 18(5): 875-887, 2022 05.
Article in English | MEDLINE | ID: mdl-34590423

ABSTRACT

INTRODUCTION: We examine the role of brain apolipoprotein B (apoB) as a putative marker of early tau pathology and cognitive decline. METHODS: Cerebrospinal fluid (CSF) samples from cognitively normal and Alzheimer's disease (AD) participants were collected to measure protein levels of apoB and AD biomarkers amyloid beta (Aß), t-tau and p-tau, as well as synaptic markers GAP43, SYNAPTOTAGMIN-1, synaptosome associated protein 25 (SNAP-25), and NEUROGRANIN. CSF apoB levels were contrasted with positron emission tomography (PET) scan measures of Aß (18F-NAV4694) and Tau (flortaucipir) along with cognitive assessment alterations over 6 to 8 years. RESULTS: CSF apoB levels were elevated in AD participants and correlated with t-tau, p-tau, and the four synaptic markers in pre-symptomatic individuals. In the latter, CSF apoB levels correlated with PET flortaucipir-binding in entorhinal, parahippocampal, and fusiform regions. Baseline CSF apoB levels were associated with longitudinal visuospatial cognitive decline. DISCUSSION: CSF apoB markedly associates with early tau dysregulation in asymptomatic subjects and identifies at-risk individuals predisposed to develop visuospatial cognitive decline over time.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein B-100 , Apolipoproteins , Apolipoproteins B , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/metabolism , Humans , Positron-Emission Tomography/methods , tau Proteins/cerebrospinal fluid
16.
Alzheimers Dement (N Y) ; 7(1): e12202, 2021.
Article in English | MEDLINE | ID: mdl-34934803

ABSTRACT

Identifying the leading health and lifestyle factors for the risk of incident dementia and Alzheimer's disease has yet to translate to risk reduction. To understand why, we examined the discrepancies between observational and clinical trial evidence for seven modifiable risk factors: type 2 diabetes, dyslipidemia, hypertension, estrogens, inflammation, omega-3 fatty acids, and hyperhomocysteinemia. Sample heterogeneity and paucity of intervention details (dose, timing, formulation) were common themes. Epidemiological evidence is more mature for some interventions (eg, non-steroidal anti-inflammatory drugs [NSAIDs]) than others. Trial data are promising for anti-hypertensives and B vitamin supplementation. Taken together, these risk factors highlight a future need for more targeted sample selection in clinical trials, a better understanding of interventions, and deeper analysis of existing data.

17.
Nat Commun ; 12(1): 5346, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504080

ABSTRACT

Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aß) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aß pathology.


Subject(s)
Aging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Brain Mapping/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Mutation , Positron-Emission Tomography/methods , Young Adult
18.
Neuroimage Clin ; 31: 102733, 2021.
Article in English | MEDLINE | ID: mdl-34192666

ABSTRACT

To move Alzheimer Disease (AD) research forward it is essential to collect data from large cohorts, but also make such data available to the global research community. We describe the creation of an open science dataset from the PREVENT-AD (PResymptomatic EValuation of Experimental or Novel Treatments for AD) cohort, composed of cognitively unimpaired older individuals with a parental or multiple-sibling history of AD. From 2011 to 2017, 386 participants were enrolled (mean age 63 years old ± 5) for sustained investigation among whom 349 have retrospectively agreed to share their data openly. Repositories are findable through the unified interface of the Canadian Open Neuroscience Platform and contain up to five years of longitudinal imaging data, cerebral fluid biochemistry, neurosensory capacities, cognitive, genetic, and medical information. Imaging data can be accessed openly at https://openpreventad.loris.ca while most of the other information, sensitive by nature, is accessible by qualified researchers at https://registeredpreventad.loris.ca. In addition to being a living resource for continued data acquisition, PREVENT-AD offers opportunities to facilitate understanding of AD pathogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Canada , Humans , Middle Aged , Retrospective Studies , tau Proteins
19.
Elife ; 102021 05 13.
Article in English | MEDLINE | ID: mdl-33983116

ABSTRACT

Beta-amyloid (Aß) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aß or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aß-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aß and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/ultrastructure , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , White Matter/pathology
20.
Neuroimage ; 231: 117832, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33549747

ABSTRACT

Resting-state functional connectivity is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. However, evidence is lacking regarding longitudinal changes in functional connectivity. This study includes 247 cognitively unimpaired individuals with a family history of sporadic AD (185 women/ 62 men; mean [SD] age of 63 [5.3] years). Plasma total-, HDL-, and LDL-cholesterol and systolic and diastolic blood pressure were measured at baseline. Global (whole-brain) brain functional connectivity and connectivity from canonical functional networks were computed from resting-state functional MRI obtained at baseline and ~3.5 years of annual follow-ups, using a predefined functional parcellation. A subsample underwent Aß- and tau-PET (n=91). Linear mixed-effects models demonstrated that global functional connectivity increased over time across the entire sample. In contrast, higher total-cholesterol and LDL-cholesterol levels were associated with greater reduction of functional connectivity in the default-mode network over time. In addition, higher diastolic blood pressure was associated with global functional connectivity reduction. The associations were similar when the analyses were repeated using two other functional brain parcellations. Aß and tau deposition in the brain were not associated with changes in functional connectivity over time in the subsample. These findings provide evidence that vascular burden is associated with a decrease in functional connectivity over time in older adults with elevated risk for AD. Future studies are needed to determine if the impact of vascular risk factors on functional brain changes precede the impact of AD pathology on functional brain changes.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognition/physiology , Magnetic Resonance Imaging/trends , Nerve Net/diagnostic imaging , Vascular Diseases/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/physiopathology , Brain/physiopathology , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/physiopathology , Rest/physiology , Risk Factors , Vascular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...