Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Chem Neurosci ; 15(2): 357-370, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38150333

ABSTRACT

The serotonin (5-hydroxytryptamine, 5-HT) 5-HT1 G-protein coupled receptor subtypes (5-HT1A/1B/1D/1E/1F) share a high sequence homology, confounding development of subtype-specific ligands. This study used a 5-HT1 structure-based ligand design approach to develop subtype-selective ligands using a 5-substituted-2-aminotetralin (5-SAT) chemotype, leveraging results from pharmacological, molecular modeling, and mutagenesis studies to delineate molecular determinants for 5-SAT binding and function at 5-HT1 subtypes. 5-SATs demonstrated high affinity (Ki ≤ 25 nM) and at least 50-fold stereoselective preference ([2S] > [2R]) at 5-HT1A, 5-HT1B, and 5-HT1D receptors but essentially nil affinity (Ki > 1 µM) at 5-HT1F receptors. The 5-SATs tested were agonists with varying degrees of potency and efficacy, depending on chemotype substitution and 5-HT1 receptor subtype. Models were built from the 5-HT1A (cryo-EM), 5-HT1B (crystal), and 5-HT1D (cryo-EM) structures, and 5-SATs underwent docking studies with up to 1 µs molecular dynamics simulations. 5-SAT interactions observed at positions 3.33, 5.38, 5.42, 5.43, and 7.39 of 5-HT1 subtypes were confirmed with point mutation experiments. Additional 5-SATs were designed and synthesized to exploit experimental and computational results, yielding a new full efficacy 5-HT1A agonist with 100-fold selectivity over 5-HT1B/1D receptors. The results presented lay the foundation for the development of additional 5-HT1 subtype selective ligands for drug discovery purposes.


Subject(s)
Receptor, Serotonin, 5-HT1F , Serotonin , Tetrahydronaphthalenes , Serotonin/metabolism , Receptors, Serotonin/genetics , Serotonin Receptor Agonists/pharmacology , Ligands , Receptors, Serotonin, 5-HT1 , Receptor, Serotonin, 5-HT1B
2.
Front Neurosci ; 17: 1196786, 2023.
Article in English | MEDLINE | ID: mdl-37424993

ABSTRACT

Background: Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods: The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results: GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion: GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.

3.
ACS Chem Neurosci ; 14(10): 1884-1895, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37104867

ABSTRACT

Many important physiological processes are mediated by alpha2A- and alpha2C-adrenergic receptors (α2Rs), a subtype of class A G protein-coupled receptors (GPCRs). However, α2R signaling is poorly understood, and there are few approved medications targeting these receptors. Drug discovery aimed at α2Rs is complicated by the high degree of binding pocket homology between α2AR and α2CR, which confounds ligand-mediated selective activation or inactivation of signaling associated with a particular subtype. Meanwhile, α2R signaling is complex and it is reported that activating α2AR is beneficial in many clinical contexts, while activating α2CR signaling may be detrimental to these positive effects. Here, we report on a novel 5-substituted-2-aminotetralin (5-SAT) chemotype that, depending on substitution, has diverse pharmacological activities at α2Rs. Certain lead 5-SAT analogues act as partial agonists at α2ARs, while functioning as inverse agonists at α2CRs, a novel pharmacological profile. Leads demonstrate high potency (e.g., EC50 < 2 nM) at the α2AR and α2CRs regarding Gαi-mediated inhibition of adenylyl cyclase and production of cyclic adenosine monophosphate (cAMP). To help understand the molecular basis of 5-SAT α2R multifaceted functional activity, α2AR and α2CR molecular models were built from the crystal structures and 1 µs molecular dynamics (MD) simulations and molecular docking experiments were performed for a lead 5-SAT with α2AR agonist and α2CR inverse agonist activity, i.e., (2S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), in comparison to the FDA-approved (for opioid withdrawal symptoms) α2AR/α2CR agonist lofexidine. Results reveal several interactions between FPT and α2AR and α2CR amino acids that may impact the functional activity. The computational data in conjunction with experimental in vitro affinity and function results provide information to understand ligand stabilization of functionally distinct GPCR conformations regarding α2AR and α2CRs.


Subject(s)
Drug Inverse Agonism , Receptors, Adrenergic, alpha-2 , Ligands , Molecular Docking Simulation , Receptors, Adrenergic, alpha-2/metabolism
4.
Bioorg Med Chem Lett ; 75: 128953, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36058468

ABSTRACT

In spite of their value in prodrug applications, the use of esters in antibody-drug-conjugate (ADC) payloads and linkers has generally been avoided due to the ubiquitous and promiscuous nature of human esterases. ADCs generally have a long circulating half life (3-7 days) that makes them susceptible to esterase-mediated metabolism. Moreover, it is largely unclear whether lysosomal and cytosolic esterases cleave ester-containing linkers upon ADC internalization. Due to our interest in the targeted delivery of immune-modulators, our team has recently prepared a series of ester-linked dexamethasone ADCs. Herein, we report our studies of the functional activity of these ADCs, with a particular focus on their catabolism in various biological milieu. We found that esters are selectively but inefficiently cleaved upon cellular uptake, likely by cytosolic esterases. Lysosomal catabolism studies indicate that, in spite of the strong proteolytic activity, very little cleavage of ester-containing linkers occurs in the lysosome. However, ADCs bearing the ester-linked payloads are active in various immune-suppressive assays, suggesting that cytosolic cleavage is taking place. This was confirmed through LCMS quantitation of the payload following cell lysis. Finally, the stability of the ester linkage was evaluated in mouse and human plasma. We found, similar to other reports, there is a significant site-dependence on the cleavage. Esters attached at highly exposed sites, such as 443C, were rapidly cleaved in plasma while esters at more hindered sites, such at 334C, were not. Together, these results help to unravel the complexities of ester-incorporation into ADC linkers and pave a path forward for their utility in ADC applications.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Prodrugs , Animals , Dexamethasone , Esterases , Esters , Humans , Immunosuppressive Agents , Mice , Prodrugs/pharmacology
5.
Mol Pharm ; 19(9): 3228-3241, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35904247

ABSTRACT

Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Quinolines , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Leukocytes, Mononuclear , Mice , Mice, SCID , Toll-Like Receptor 7 , Xenograft Model Antitumor Assays
6.
Angew Chem Int Ed Engl ; 59(33): 13814-13820, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32268004

ABSTRACT

The substrate promiscuity of microbial transglutaminase (mTG) has been exploited in various applications in biotechnology, in particular for the attachment of alkyl amines to glutamine-containing peptides and proteins. Here, we expand the substrate repertoire to include hydrazines, hydrazides, and alkoxyamines, resulting in the formation of isopeptide bonds with varied susceptibilities to hydrolysis or exchange by mTG. Furthermore, we demonstrate that simple unsubstituted hydrazine and dihydrazides can be used to install reactive hydrazide handles onto the side chain of internal glutamine residues. The distinct hydrazide handles can be further coupled with carbonyls, including ortho-carbonylphenylboronic acids, to form site-specific and functional bioconjugates with tunable hydrolytic stability. The extension of the substrate scope of mTG beyond canonical amines thus substantially broadens the versatility of the enzyme, providing a new approach to facilitate novel applications.


Subject(s)
Streptomyces/enzymology , Transglutaminases/metabolism , Azides/metabolism , Catalysis , Hydrazines/metabolism , Hydrolysis , Peptides/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL