Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 45(12): 9303-9319, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36564666

ABSTRACT

The poultry industry is generating a significant amount of waste from chicken droppings that are abundant in microbes as well as macro- and micronutrients suitable for manure. It has the potential to improve the microbial activity and nutrient dynamics in the soil, ultimately improving soil fertility. The present study aimed to investigate the effect of chicken droppings manure (CDM) on the diversity of the soil microbiome in the free walking chicken's area located in Stefanidar, Rostov Region, Russia. The data obtained were compared with 16 s rRNA from control samples located not far from the chicken's free-walking area, but not in direct contact with the droppings. Effect of CDM on the physicochemical characteristics of the soil and changes in its microbial diversity were assessed by employing the metagenomic approaches and 16 s rRNA-based taxonomic assessment. The alpha and beta diversity indices revealed that the application of the CDM significantly improved the soil microbial diversity. The 16S taxonomical analysis confirmed Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes as abundant bacterial phylum. It also revealed the increase in the total number of the individual operational taxonomic unit (OTU) species, a qualitative indicator of the rich microbial community. The alpha diversity confirmed that the significant species richness of the soil is associated with the CDM treatment. The increased OTUs represent the qualitative indicator of a community that has been studied up to the depth of 5-20 cm of the CDM treatment range. These findings suggested that CDM-mediated microbial richness are believed to confer the cycling of carbon, nitrogen, and sulfur, along with key soil enzymes such as dehydrogenases and catalase carbohydrate-active enzymes. Hence, the application of CDM could improve soil fertility by nutrient cycling caused by changes in soil microbial dynamics, and it could also be a cost-effective sustainable means of improving soil health.


Subject(s)
Microbiota , Soil , Animals , Chickens , Manure , Poultry , Soil Microbiology , Bacteria/genetics
2.
Biology (Basel) ; 11(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35205071

ABSTRACT

Fish as model objects have found wide applications in biology and fundamental medicine and allow studies of behavioral and physiological responses to various environmental factors. Representatives of the genus Nothobranchius are one of the most convenient objects for such studies. Male fish belonging to the family Nothobranchiidae are characterized by extremely diverse coloration, which constantly changes, depending on the age of the fish, environmental factors, and social hierarchical status. These fish species are characterized by a short life cycle, which allows changes in coloration, an indicator of the ontogenesis stage, to be estimated. Existing methods of fish color assessments do not allow the intensity of coloration of particular body zones to be clearly differentiated. In the present study, we suggest a method of two-factor assessment of specific fish body zones using modified methods of photofixation and image processing software. We describe the protocol of the method and the results of its application to different-aged groups of male Nothobranchius guentheri. The coloration of selected areas (i.e., red spot on the gill cover (RSGC), black border on the caudal fin (BBCF), and white border on the dorsal fin (WBDF)) differed significantly according to the size and age of the fish (p < 0.05). The data obtained suggest that N. guentheri can be a model for studying aging by the intensity of body coloration in males.

3.
Vet Microbiol ; 261: 109156, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34388682

ABSTRACT

Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.


Subject(s)
Animal Husbandry , Biomarkers , Host Microbial Interactions , Probiotics , Animal Husbandry/methods , Animal Husbandry/trends , Animals , Cells, Cultured , Host Microbial Interactions/physiology , Humans , Models, Biological
4.
Probiotics Antimicrob Proteins ; 13(5): 1425-1432, 2021 10.
Article in English | MEDLINE | ID: mdl-33988837

ABSTRACT

In this study, the duckweed varieties Lemna minor, Spirodela polyrhiza, and a commercially processed duckweed food supplement were investigated as potential substrates for the propagation of two probiotic Bacillus strains, B. subtilis KATMIRA1933 and B. amyloliquefaciens B-1895. Both L. minor and S. polyrhiza were found to be suitable substrates for the propagation of both bacilli, with 8.47-9.48 Log CFU/g and 10.17-11.31 Log CFU/g after 24 and 48 h growth on the substrates, respectively. The commercial duckweed product was a less favorable substrate, with growth reaching a maximum of 7.89-8.91 CFU/g after 24 h with no further growth after 48 h. Growth and adherence of the bacilli to the three products were confirmed via electron microscopy. These strains have demonstrated health-promoting benefits for poultry and thereby have the potential to enhance duckweed as an animal feed through the process of fermentation. Duckweed has been shown to be a promising alternative resource for protein and has the opportunity to become a valuable resource in multiple industries as a potential means to increase sustainability, food security, and reduce environmental impact.


Subject(s)
Animal Feed , Araceae , Bacillus , Probiotics , Animals , Fermentation , Poultry
5.
Probiotics Antimicrob Proteins ; 11(4): 1324-1329, 2019 12.
Article in English | MEDLINE | ID: mdl-30674007

ABSTRACT

A promising approach for slowing down the rate of reproductive aging is the use of probiotic bacteria as a feed additive. In the current study was investigated the influence of the intake of a potential probiotic on the follicle content and expression of vitellogenin genes (vtg1, vtg2, vtg3) in aged hens. RNA was isolated from liver samples collected from 570-day-old laying hens and gene expression levels were measured using RT-PCR. Bacillus subtilis KATMIRA1933 supplementation had a positive effect on the number of formed follicles in hens and also triggered a significant increase in the relative expression levels of vtg1, vtg2, and vtg3. A Bacillus amyloliquefaciens B-1895 enriched diet or a combination of the two strains had a modest effect on both the number of follicles and the expression of vitellogenin genes. Additionally, the study demonstrates that vitellogenin mRNA expression levels can be considered as a biomarker in a convenient approach for analyzing the hen's egg-laying ability.


Subject(s)
Avian Proteins/genetics , Chickens/genetics , Probiotics/administration & dosage , Vitellogenins/genetics , Animal Feed/analysis , Animals , Avian Proteins/metabolism , Bacillus amyloliquefaciens/physiology , Bacillus subtilis/physiology , Chickens/growth & development , Chickens/physiology , Dietary Supplements/analysis , Female , Gene Expression/drug effects , Reproduction/drug effects , Vitellogenins/metabolism
6.
Probiotics Antimicrob Proteins ; 11(2): 588-593, 2019 06.
Article in English | MEDLINE | ID: mdl-29974408

ABSTRACT

In the current study, we performed in vivo investigation of probiotic intake influence on nuclear and mitochondrial DNA damage of hens, using quantitative PCR techniques. The probiotic supplementation to the diet of Hisex Brown hens had no significant effect on the rate of telomere shortening. After prolonged probiotic intake (225 and 445 days), the 18-21% decrease in the mtDNA lesions was detected. Since avian mitochondrial DNA damage investigations are rare, the current study of the probiotic-enriched diet's impact on the damage of the hen mitochondrial DNA is novel and highly important. The decrease of mtDNA damage is a beneficial property, which could positively affect the reproductive aging of hens. The positive impact of probiotic supplementation on hens' performance traits such as hen-day egg production, egg weight and mass, and feed conversion ratio was observed.


Subject(s)
Bacillus subtilis , Chickens/genetics , DNA Damage , DNA, Mitochondrial/genetics , Probiotics/administration & dosage , Telomere , Animals , Dietary Supplements , Eggs , Female
7.
Probiotics Antimicrob Proteins ; 10(2): 367-373, 2018 06.
Article in English | MEDLINE | ID: mdl-29238921

ABSTRACT

The study aims at elucidating the effect of bacilli probiotic preparations on the physiology of laying hens and roosters. Probiotic formulations were prepared as soybean products fermented by Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. In this study, groups of male and female chickens were used. These groups received a probiotic preparation based on either B. subtilis KATMIRA1933 or B. amyloliquefaciens B-1895, or of a mixture of strains, from the first day to the age of 39 weeks. These preparations positively affected egg production, quality of sperm production, and quality and hatchery of eggs. Considering the simplicity and cost effectiveness of the soy-based probiotic preparation, these formulations should be considered as advantageous in modern livestock production.


Subject(s)
Bacillus amyloliquefaciens/metabolism , Bacillus subtilis/metabolism , Chickens/physiology , Dietary Supplements/analysis , Glycine max/microbiology , Probiotics/administration & dosage , Animal Feed/analysis , Animal Feed/microbiology , Animal Nutritional Physiological Phenomena , Animals , Chickens/growth & development , Diet/veterinary , Female , Fermentation , Male , Oviposition , Ovum/physiology , Probiotics/metabolism , Glycine max/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...