Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 43(9): 1856-62, 2004 Mar 20.
Article in English | MEDLINE | ID: mdl-15065715

ABSTRACT

Free-running thulium laser pulses (Cr:Tm:YAG, lambda = 2.01 microm, tp = 300 micros) were applied to a purified, degassed water sample and the resulting temperature rise was investigated by an optical temperature probe. The probe detected water reflectance index changes with temperature and also the onset of vaporization, which was found to occur in a superheat regime, at approximately 230 degrees C. The experimental data were compared with theoretical temperature calculations, and deviations of less than 20 degrees C were stated. The best agreement between theory and experiment was found for temperatures below 180 degrees C, defining by this the method's high accuracy limit. In conclusion, both the optical temperature probe and the presented calculations can help to improve dosimetry in pulsed IR laser applications by precise temperature measurement and prediction.


Subject(s)
Hot Temperature , Infrared Rays , Lasers , Optics and Photonics/instrumentation , Thermometers , Water
2.
Appl Opt ; 41(27): 5797-803, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12269579

ABSTRACT

A simple experimental setup is described that facilitates accurate measurements of the temperature-dependent water absorption coefficient in the mid-infrared spectral region. With this setup, the absorption of holmium and thulium laser radiation in water was quantified to a precision of 0.5%. In the 20-100 degrees C temperature range, a linear decrease of the absorption coefficient with temperature is observed. The slope coefficients amount to -0.104 +/- 0.001 and -0.259 +/- 0.003 l/(K cm) for 2090-nm holmium and 2014-nm thulium radiation, respectively. At both wavelengths, this bleaching reduces the absorption coefficients of water at 100 degrees C by one third when compared with room temperature. A numerical simulation shows that the variable absorption has a noticeable influence on peak temperatures in laser heating of water.

SELECTION OF CITATIONS
SEARCH DETAIL