Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1117821, 2023.
Article in English | MEDLINE | ID: mdl-36873931

ABSTRACT

Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder affecting the function of motile cilia in several organ systems. In PCD, male infertility is caused by defective sperm flagella composition or deficient motile cilia function in the efferent ducts of the male reproductive system. Different PCD-associated genes encoding axonemal components involved in the regulation of ciliary and flagellar beating are also reported to cause infertility due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we performed genetic testing by next generation sequencing techniques, PCD diagnostics including immunofluorescence-, transmission electron-, and high-speed video microscopy on sperm flagella and andrological work up including semen analyses. We identified ten infertile male individuals with pathogenic variants in CCDC39 (one) and CCDC40 (two) encoding ruler proteins, RSPH1 (two) and RSPH9 (one) encoding radial spoke head proteins, and HYDIN (two) and SPEF2 (two) encoding CP-associated proteins, respectively. We demonstrate for the first time that pathogenic variants in RSPH1 and RSPH9 cause male infertility due to sperm cell dysmotility and abnormal flagellar RSPH1 and RSPH9 composition. We also provide novel evidence for MMAF in HYDIN- and RSPH1-mutant individuals. We show absence or severe reduction of CCDC39 and SPEF2 in sperm flagella of CCDC39- and CCDC40-mutant individuals and HYDIN- and SPEF2-mutant individuals, respectively. Thereby, we reveal interactions between CCDC39 and CCDC40 as well as HYDIN and SPEF2 in sperm flagella. Our findings demonstrate that immunofluorescence microscopy in sperm cells is a valuable tool to identify flagellar defects related to the axonemal ruler, radial spoke head and the central pair apparatus, thus aiding the diagnosis of male infertility. This is of particular importance to classify the pathogenicity of genetic defects, especially in cases of missense variants of unknown significance, or to interpret HYDIN variants that are confounded by the presence of the almost identical pseudogene HYDIN2.

2.
Sci Rep ; 10(1): 8935, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488054

ABSTRACT

Signalling pathways and cellular interactions defining initial processes of testis morphogenesis, i.e. cord formation, are poorly understood. In vitro cell-based systems modelling cord formation can be utilised as platforms to interrogate processes of tubulogenesis. We aimed at testing our established cord formation in vitro model using adult human testicular cells as a quantitative assay that can facilitate future studies on cord morphogenesis. We challenged the responsiveness of our system with a broad-spectrum protein kinase inhibitor, K252a. Cultured testicular cells were treated with various K252a concentrations under constant exposure and compound withdrawal. To quantify cell reaggregation changes, we performed computer-assisted phase-contrast image analysis of aggregate size and number. Cell reaggregation was analysed in detail by categorisation of aggregates into size groups and accounting for changes in aggregate number per size category. We found a dose-related disturbance of testicular cell reaggregation. K252a decreased aggregate size (IC50 of 203.3 nM) and reduced the large aggregate numbers. Video recordings revealed that treatment with K252a at a concentration above IC50 interfered with aggregate coalescence into cords. Short-term exposure and compound wash-out induced irreversible decrease in large aggregates. We propose our in vitro model as a functional platform to quantitatively investigate seminiferous tubulogenesis under pharmacological impact.


Subject(s)
Protein Kinase Inhibitors/metabolism , Sex Differentiation/physiology , Testis/metabolism , Carbazoles/metabolism , Carbazoles/pharmacology , Cell Communication , Cell Differentiation/physiology , Cells, Cultured , Humans , Indole Alkaloids/metabolism , Indole Alkaloids/pharmacology , Male , Morphogenesis/physiology , Protein Kinases/metabolism , Seminiferous Tubules/metabolism , Sertoli Cells/metabolism , Signal Transduction , Testis/physiology
3.
Hum Reprod ; 33(10): 1915-1923, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30189007

ABSTRACT

STUDY QUESTION: Does the chemosensory activation of CatSper Ca2+ channels in human sperm give rise to additive, sub-additive or even synergistic actions among agonists? SUMMARY ANSWER: We show that oviductal ligands and endocrine disrupting chemicals (EDCs) activate human CatSper highly synergistically. WHAT IS KNOWN ALREADY: In human sperm, the sperm-specific CatSper channel controls the intracellular Ca2+ concentration and, thereby, several crucial stages toward fertilization. CatSper is activated by oviductal ligands and structurally diverse EDCs. The chemicals mimic the action of the physiological ligands, which might interfere with the precisely coordinated sequence of events underlying fertilization. STUDY DESIGN, SIZE, DURATION: For both oviductal ligands and EDCs, we examined in quantitative terms whether stimulation of human sperm in vitro with mixtures results in additive, sub-additive or synergistic actions. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied activation of CatSper in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. The combined action of progesterone and prostaglandins and of the EDCs benzylidene camphor sulfonic acid (BCSA) and α-Zearalenol was evaluated by curve-shift analysis, curvilinear isobolographic analysis and the combination-index method. MAIN RESULTS AND THE ROLE OF CHANCE: Analysis of the action of progesterone/prostaglandin and BCSA/α-Zearalenol mixtures in human sperm by fluorimetry revealed that the oviductal ligands and EDCs both evoke Ca2+ influx via CatSper in a highly synergistic fashion. Patch-clamp recordings of CatSper currents in human sperm corroborated the synergistic ligand-activation of the channel. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS: These findings indicate that the fertilization process is orchestrated by multiple oviductal CatSper agonists that act in concert to control the behavior of sperm. Moreover, our results substantiate the concerns regarding the negative impact of EDCs on male reproductive health. So far, safety thresholds like the "No Observed Adverse Effect Level (NOAEL)" or "No Observed Effect Concentration (NOEC)" are set for individual EDCs. Our finding that EDCs act synergistically in human sperm challenges the validity of this procedure. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the German Research Foundation (SFB 645; CRU326), the Cells-in-Motion (CiM) Cluster of Excellence, Münster, (FF-2016-17), the 'Innovative Medical Research' of the University of Münster Medical School (BR121507), an EDMaRC research grant from the Kirsten and Freddy Johansen's Foundation, and the Innovation Fund Denmark (InnovationsFonden; 14-2013-4). The authors have no competing financial interests.


Subject(s)
Calcium Channels/metabolism , Progesterone/pharmacology , Prostaglandins/pharmacology , Seminal Plasma Proteins/metabolism , Sperm Motility/drug effects , Spermatozoa/metabolism , Calcium Signaling , Dose-Response Relationship, Drug , Endocrine Disruptors/metabolism , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...