Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Biofouling ; 37(1): 78-95, 2021 01.
Article in English | MEDLINE | ID: mdl-33491472

ABSTRACT

Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.


Subject(s)
Biofouling , Diatoms , Ulva , Acrylates , Animals , Aquatic Organisms , Biofouling/prevention & control , Flavobacteriaceae , Methacrylates/pharmacology , Siloxanes , Surface Properties
2.
J Biomed Mater Res A ; 109(1): 64-76, 2021 01.
Article in English | MEDLINE | ID: mdl-32419308

ABSTRACT

The chronic reliability of bioelectronic neural interfaces has been challenged by foreign body reactions (FBRs) resulting in fibrotic encapsulation and poor integration with neural tissue. Engineered microtopographies could alleviate these challenges by manipulating cellular responses to the implanted device. Parallel microchannels have been shown to modulate neuronal cell alignment and axonal growth, and Sharklet™ microtopographies of targeted feature sizes can modulate bio-adhesion of an array of bacteria, marine organisms, and epithelial cells due to their unique geometry. We hypothesized that a Sharklet™ micropattern could be identified that inhibited fibroblasts partially responsible for FBR while promoting Schwann cell proliferation and alignment. in vitro cell assays were used to screen the effect of Sharklet™ and channel micropatterns of varying dimensions from 2 to 20 µm on fibroblast and Schwann cell metrics (e.g., morphology/alignment, nuclei count, metabolic activity), and a hierarchical analysis of variance was used to compare treatments. In general, Schwann cells were found to be more metabolically active and aligned than fibroblasts when compared between the same pattern. 20 µm wide channels spaced 2 µm apart were found to promote Schwann cell attachment and alignment while simultaneously inhibiting fibroblasts and warrant further in vivo study on neural interface devices. No statistically significant trends between cellular responses and geometrical parameters were identified because mammalian cells can change their morphology dependent on their environment in a manner dissimilar to bacteria. Our results showed although surface patterning is a strong physical tool for modulating cell behavior, responses to micropatterns are highly dependent on the cell type.


Subject(s)
Fibroblasts/drug effects , Neural Prostheses , Schwann Cells/drug effects , Animals , Axons , Bacterial Adhesion/drug effects , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Equipment Design , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Nerve Regeneration , Rats , Schwann Cells/metabolism , Schwann Cells/ultrastructure
3.
PLoS One ; 15(12): e0244518, 2020.
Article in English | MEDLINE | ID: mdl-33370781

ABSTRACT

Spread of pathogens on contaminated surfaces plays a key role in disease transmission. Surface technologies that control pathogen transfer can help control fomite transmission and are of great interest to public health. Here, we report a novel bead transfer method for evaluating fomite transmission in common laboratory settings. We show that this method meets several important criteria for quantitative test methods, including reasonableness, relevancy, resemblance, responsiveness, and repeatability, and therefore may be adaptable for standardization. In addition, this method can be applied to a wide variety of pathogens including bacteria, phage, and human viruses. Using the bead transfer method, we demonstrate that an engineered micropattern limits transfer of Staphylococcus aureus by 97.8% and T4 bacteriophage by 93.0% on silicone surfaces. Furthermore, the micropattern significantly reduces transfer of influenza B virus and human coronavirus on silicone and polypropylene surfaces. Our results highlight the potential of using surface texture as a valuable new strategy in combating infectious diseases.


Subject(s)
Bacteriophage T4/pathogenicity , Bacteriophages/pathogenicity , Coronavirus/pathogenicity , Influenza B virus/pathogenicity , Staphylococcal Infections/therapy , Staphylococcus aureus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Fomites/microbiology , Fomites/virology , Humans , Influenza, Human/transmission , Influenza, Human/virology , Silicones
4.
Langmuir ; 36(1): 379-387, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31829633

ABSTRACT

Effectively negating the deleterious impact of marine biofouling on the world's maritime fleet in an environmentally conscientious manner presents a difficult challenge due to a variety of factors including the complexity and diversity of fouling species and the differing surface adhesion strategies. Understanding how surface properties relate to biofouling can inform and guide the development of new antibiofouling coatings to address this challenge. Herein, we report on the development of a living photopolymerization strategy used to tailor the surface properties of silicone rubber using controlled anisotropic poly(acrylamide) patterns and the resulting antibiofouling efficacy of these surfaces against zoospores of the model marine fouling organism, Ulva linza. Chemical patterns were fabricated using reversible addition-fragmentation chain-transfer (RAFT) living polymerization in conjunction with photolithography. Pattern geometries were inspired by the physical (i.e., nonchemical) Sharklet engineered microtopography system that has been shown to be effective against the same model organism. Sharklet chemical patterns and analogous parallel channels were fabricated in sizes ranging from 2 to 10 µm in the lateral dimension with tailorable feature heights ranging from tens to hundreds of nanometers. Nonpatterned, chemically grafted poly(acrylamide) silicone surfaces inhibited algal spore attachment density by 59% compared to the silicone control; however, attachment density on chemical nanotopographies was not statistically different from the control. While these results indicate that the chemical nanotopographies chosen do not represent an effective antibiofouling coating, it was found that the Sharklet pattern geometry, when sized below the 5 µm critical attachment size of the spores, significantly reduced the algal spore density compared to the equally sized channel geometry. These results indicate that specific chemical geometry of the proper sizing can impact the behavior of the algal spores and could be used to further study the mechanistic behavior of biofouling organisms.

5.
Biofouling ; 35(6): 684-695, 2019 07.
Article in English | MEDLINE | ID: mdl-31429598

ABSTRACT

An extended model of the surface energetic attachment (SEA) model is introduced to study the fouling of marine organisms on microtopographic surfaces, taking into account the excluded volume interaction and the attraction between the organisms. It is shown that the excluded volume interaction leads to changes in the site-typed attachment probabilities which increase with the average spore density on the surface. As a result of these changes, the spore density map is flattened under very high density fouling. The attractive interaction on the other hand leads to aggregation of spores and the average aggregate size increased with the strength of attraction. The model can be mapped to a specific experiment to determine the attachment energy parameters. In contrast to various prior empirical approaches, the extended SEA model is rigorous from the statistical mechanics viewpoint, thus it provides a reliable tool for studying complex attachment behaviors of microorganisms on topographic surfaces.


Subject(s)
Biofouling , Spores/physiology , Computer Simulation , Models, Biological , Monte Carlo Method , Surface Properties
6.
J Med Microbiol ; 66(11): 1692-1698, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28984233

ABSTRACT

PURPOSE: Surface microtopography offers a promising approach for infection control. The goal of this study was to provide evidence that micropatterned surfaces significantly reduce the potential risk of medical device-associated infections. METHODOLOGY: Micropatterned and smooth surfaces were challenged in vitro against the colonization and transference of two representative bacterial pathogens - Staphylococcus aureus and Pseudomonas aeruginosa. A percutaneous rat model was used to assess the effectiveness of the micropattern against device-associated S. aureus infections. After the percutaneous insertion of silicone rods into (healthy or immunocompromised) rats, their backs were inoculated with S. aureus. The bacterial burdens were determined in tissues under the rods and in the spleens. RESULTS: The micropatterns reduced adherence by S. aureus (92.3 and 90.5 % reduction for flat and cylindrical surfaces, respectively), while P. aeruginosa colonization was limited by 99.9 % (flat) and 95.5 % (cylindrical). The micropatterned surfaces restricted transference by 95.1 % for S. aureus and 94.9 % for P. aeruginosa, compared to smooth surfaces. Rats with micropatterned devices had substantially fewer S. aureus in subcutaneous tissues (91 %) and spleens (88 %) compared to those with smooth ones. In a follow-up study, immunocompromised rats with micropatterned devices had significantly lower bacterial burdens on devices (99.5 and 99.9 % reduction on external and internal segments, respectively), as well as in subcutaneous tissues (97.8 %) and spleens (90.7 %) compared to those with smooth devices. CONCLUSION: Micropatterned surfaces exhibited significantly reduced colonization and transference in vitro, as well as lower bacterial burdens in animal models. These results indicate that introducing this micropattern onto surfaces has high potential to reduce medical device-associated infections.


Subject(s)
Equipment Contamination , Equipment and Supplies/microbiology , Surface Properties , Animals , Cyclophosphamide/pharmacology , Prostheses and Implants/microbiology , Rats
7.
Biofouling ; 33(3): 252-267, 2017 03.
Article in English | MEDLINE | ID: mdl-28270054

ABSTRACT

There is currently strong motivation due to ecological concerns to develop effective anti-biofouling coatings that are environmentally benign, durable, and stable for use by the maritime industry. The antifouling (AF) and fouling-release (FR) efficacy of amphiphilic, charged copolymers composed of ~52% acrylamide, ~34% acrylic acid, and ~14% methyl acrylate grafted to poly(dimethyl siloxane) (PDMSe) surfaces were tested against zoospores of the green alga Ulva linza and the diatom Navicula incerta. The biofouling response to molecular weight variation was analyzed for grafts ranging from ~100 to 1,400 kg mol-1, The amphiphilic coatings showed a marked improvement in the FR response, with a 55% increase in the percentage removal of diatoms and increased AF efficacy, with 92% reduction in initial attachment density of zoospores, compared to PDMSe controls. However, graft molecular weight, in the range tested, was statistically insignificant. Grafting copolymers to PDMSe embossed with the Sharklet™ microtopography did not produce enhanced AF efficacy.


Subject(s)
Biofilms/drug effects , Biofouling/prevention & control , Diatoms/physiology , Dimethylpolysiloxanes/pharmacology , Surface-Active Agents/pharmacology , Ulva/physiology , Acrylates/chemistry , Acrylic Resins/chemistry , Biofilms/growth & development , Dimethylpolysiloxanes/chemistry , Molecular Weight , Surface Properties , Surface-Active Agents/chemistry
8.
Ann Biomed Eng ; 44(12): 3645-3654, 2016 12.
Article in English | MEDLINE | ID: mdl-27535564

ABSTRACT

Tracheal intubation disrupts physiological homeostasis of secretion production and clearance, resulting in secretion accumulation within endotracheal tubes (ETTs). Novel in vitro and in vivo models were developed to specifically recapitulate the clinical manifestations of ETT occlusion. The novel Sharklet™ micropatterned ETT was evaluated, using these models, for the ability to reduce the accumulation of both bacterial biofilm and airway mucus compared to a standard care ETT. Novel ETTs with micropattern on the inner and outer surfaces were placed adjacent to standard care ETTs in in vitro biofilm and airway patency (AP) models. The primary outcome for the biofilm model was to compare commercially-available ETTs (standard care and silver-coated) to micropatterned for quantity of biofilm accumulation. The AP model's primary outcome was to evaluate accumulation of artificial airway mucus. A 24-h ovine mechanical ventilation model evaluated the primary outcome of relative quantity of airway secretion accumulation in the ETTs tested. The secondary outcome was measuring the effect of secretion accumulation in the ETTs on airway resistance. Micropatterned ETTs significantly reduced biofilm by 71% (p = 0.016) compared to smooth ETTs. Moreover, micropatterned ETTs reduced lumen occlusion, in the AP model, as measured by cross-sectional area, in distal (85%, p = 0.005), middle (84%, p = 0.001) and proximal (81%, p = 0.002) sections compared to standard care ETTs. Micropatterned ETTs reduced the volume of secretion accumulation in a sheep model of occlusion by 61% (p < 0.001) after 24 h of mechanical ventilation. Importantly, micropatterned ETTs reduced the rise in ventilation peak inspiratory pressures over time by as much as 49% (p = 0.005) compared to standard care ETTs. Micropatterned ETTs, demonstrated here to reduce bacterial contamination and mucus occlusion, will have the capacity to limit complications occurring during mechanical ventilation and ultimately improve patient care.


Subject(s)
Biofilms/growth & development , Intubation, Intratracheal/instrumentation , Methicillin-Resistant Staphylococcus aureus/physiology , Models, Biological , Pseudomonas aeruginosa/physiology , Respiration, Artificial/instrumentation , Humans , Surface Properties
9.
Exp Biol Med (Maywood) ; 241(9): 986-95, 2016 05.
Article in English | MEDLINE | ID: mdl-27037279

ABSTRACT

Nearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model. Results indicate that the Sharklet™-micropatterned apical layer of the dressing increased artificial wound coverage by up to 64%, P = 0.024 in vitro. In vivo evaluation demonstrated that the bilayered dressing construction enhanced overall healing outcomes significantly compared to untreated wounds and that these outcomes were not significantly different from a leading clinically available wound dressing. Collectively, these results demonstrate high potential for this new dressing to effectively accelerate wound healing.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Wound Healing , Animals , Bandages , Cell Movement , Humans , Keratinocytes/cytology , Male , Materials Testing , Rats, Sprague-Dawley
10.
PLoS One ; 10(12): e0145756, 2015.
Article in English | MEDLINE | ID: mdl-26696412

ABSTRACT

Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.). This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.


Subject(s)
Lizards/physiology , Locomotion/physiology , Animals , Surface Properties
11.
Carbohydr Polym ; 128: 122-9, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26005147

ABSTRACT

Biocomposites with tunable properties were successfully prepared through ionic assembly between anionic carboxymethyl cellulose (CMC) and cationic copolymers (quaternized poly(l-lactide)-block-poly N,N-dimethylamino-2-ethyl methacrylate) (PLA-b-PDMAEMA). The quaternized PDMAEMA segment not only works as a compatibilizer between hydrophilic CMC and hydrophobic PLA, but also acts as a lubricant between these two rigid biopolymers. The (1)H NMR (nuclear magnetic resonance) spectra demonstrated successful synthesis of PLA-b-PDMAEMA with controlled molecular weight of PDMAEMA segment. The results from scanning electronic microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) verified the interaction between quaternized copolymer micelles and anionic CMC networks. The resultant biocomposite could form a transparent and uniform film after casting. Both storage moduli and maximum degradation temperature of PLA/CMC composites were increased with the reduction of molecular weight of PDMAEMA segments. It suggests that the properties of biocomposite materials can be tailored by adjusting the chain length of inclusive PDMAEMA segment.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Methacrylates/chemistry , Polyesters/chemistry , Magnetic Resonance Spectroscopy , Micelles , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
12.
Clin Transl Med ; 4: 9, 2015.
Article in English | MEDLINE | ID: mdl-25852825

ABSTRACT

BACKGROUND: Catheter-related bloodstream infections (CRBSIs) and catheter-related thrombosis (CRT) are common complications of central venous catheters (CVC), which are used to monitor patient health and deliver medications. CVCs are subject to protein adsorption and platelet adhesion as well as colonization by the natural skin flora (i.e. Staphylococcus aureus and Staphylococcus epidermidis). Antimicrobial and antithrombotic drugs can prevent infections and thrombosis-related complications, but have associated resistance and safety risks. Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined approach as it has wide reaching anti-fouling capabilities. To assess the feasibility for this micropattern to improve CVC-related healthcare outcomes, bacterial colonization and platelet interactions were analyzed in vitro on a material common for vascular access devices. METHODS: To evaluate bacterial inhibition after simulated vascular exposure, micropatterned thermoplastic polyurethane surfaces were preconditioned with blood proteins in vitro then subjected to a bacterial challenge for 1 and 18 h. Platelet adhesion was assessed with fluorescent microscopy after incubation of the surfaces with platelet-rich plasma (PRP) supplemented with calcium. Platelet activation was further assessed by monitoring fibrin formation with fluorescent microscopy after exposure of the surfaces to platelet-rich plasma (PRP) supplemented with calcium in a flow-cell. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. RESULTS: Blood and serum conditioned micropatterned surfaces reduced 18 h S. aureus and S. epidermidis colonization by 70% (p ≤ 0.05) and 71% (p < 0.01), respectively, when compared to preconditioned unpatterned controls. Additionally, platelet adhesion and fibrin sheath formation were reduced by 86% and 80% (p < 0.05), respectively, on the micropattern, when compared to controls. CONCLUSIONS: The Sharklet micropattern, in a CVC-relevant thermoplastic polyurethane, significantly reduced bacterial colonization and relevant platelet interactions after simulated vascular exposure. These results suggest that the incorporation of the Sharklet micropattern on the surface of a CVC may inhibit the initial events that lead to CRBSI and CRT.

13.
Transl Vis Sci Technol ; 4(2): 9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25883876

ABSTRACT

PURPOSE: To evaluate the ability of Sharklet (SK) micropatterns to inhibit lens epithelial cell (LEC) migration. Sharklet Technologies, Inc. (STI) and InSight Innovations, LLC have proposed to develop a Sharklet-patterned protective membrane (PM) to be implanted in combination with a posterior chamber intraocular lens (IOL) to inhibit cellular migration across the posterior capsule, and thereby reduce rates of posterior capsular opacification (PCO). METHODS: A variety of STI micropatterns were evaluated versus smooth (SM) controls in a modified scratch wound assay for the ability to reduce or inhibit LEC migration. The best performing topography was selected, translated to a radial design, and applied to PM prototypes. The PM prototypes were tested in an in vitro PCO model for reduction of cell migration behind an IOL versus unpatterned prototypes and IOLs with no PM. In both assays, cell migration was analyzed with fluorescent microscopy. RESULTS: All SK micropatterns significantly reduced LEC migration compared with SM controls. Micropatterns that protruded from the surface reduced migration more than recessed features. The best performing micropattern reduced LEC coverage by 80%, P = 0.0001 (ANOVA, Tukey Test). Micropatterned PMs reduced LEC migration in a PCO model by 50%, P = 0.0005 (ANOVA, Tukey Test) compared with both IOLs with no PM and IOLs with SM PMs. CONCLUSIONS: Collectively, in vitro results indicate the implantation of micropatterned PMs in combination with posterior chamber IOLs could significantly reduce rates of clinically relevant PCO. This innovative technology is a globally accessible solution to high PCO rates. TRANSLATIONAL RELEVANCE: A novel IOL incorporating the SK micropattern in a membrane design surrounding the optic may help increase the success of cataract surgery by reducing secondary cataract, or PCO.

14.
Langmuir ; 30(50): 15212-8, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25420235

ABSTRACT

Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces.


Subject(s)
Biofouling/prevention & control , Engineering , Microtechnology/methods , Ulva/cytology , Cell Adhesion , Diatoms/cytology , Spores/cytology , Surface Properties
15.
Article in English | MEDLINE | ID: mdl-25232470

ABSTRACT

BACKGROUND: Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additives. The studies presented here were carried out to investigate the MP surfaces capability to reduce colonization of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) compared to smooth control surfaces. METHODS: The MP and smooth surfaces produced in acrylic film were compared for remaining bacterial contamination and colonization following inoculation. Direct sampling of surfaces was carried out after inoculation by immersion, spray, and/or touch methods. Ultimately, a combination assay was developed to assess bacterial contamination after touch transfer inoculation combined with drying (persistence) to mimic common environmental contamination scenarios in the clinic or hospital environment. The combination transfer and persistence assay was then used to test antimicrobial copper beside the MP for the ability to reduce MSSA and MRSA challenge. RESULTS: The MP reduced bacterial contamination with log reductions ranging from 87-99% (LR = 0.90-2.18; p < 0.05) compared to smooth control surfaces. The MP was more effective than the 99.9% pure copper alloy C11000 at reducing surface contamination of S. aureus (MSSA and MRSA) through transfer and persistence of bacteria. The MP reduced MSSA by as much as 97% (LR = 1.54; p < 0.01) and MRSA by as much as 94% (LR = 1.26; p < 0.005) compared to smooth controls. Antimicrobial copper had no significant effect on MSSA contamination, but reduced MRSA contamination by 80% (LR = 0.70; p < 0.005). CONCLUSION: The assays developed in this study mimic hospital environmental contamination events to demonstrate the performance of a MP to limit contamination under multiple conditions. Antimicrobial copper has been implemented in hospital room studies to evaluate its impact on nosocomial infections and a decrease in HAI rate was shown. Similar implementation of the MP has potential to reduce the incidence of HAIs although future clinical studies will be necessary to validate the MP's true impact.

16.
Clin Transl Med ; 3: 8, 2014.
Article in English | MEDLINE | ID: mdl-24739529

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro. METHODS: The top five pathogens associated with ETT-related pneumonia, Methicillin-Resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Klebsiella pneumonia, Acinetobacter baumannii, and Escherichia coli, were evaluated for attachment to micro-patterned and un-patterned silicone surfaces in a short-term colonization assay. Two key pathogens, MRSA and Pseudomonas aeruginosa, were evaluated for biofilm formation in a nutrient rich broth for four days and minimal media for 24 hours, respectively, on each surface type. P. aeruginosa was further evaluated for biofilm formation on each surface type in a mucin-modified medium mimicking tracheal mucosal secretions. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. RESULTS: Micro-patterned surfaces demonstrated reductions in microbial colonization for a broad range of species, with up to 99.9% (p < 0.05) reduction compared to un-patterned controls. Biofilm formation was also reduced, with 67% (p = 0.12) and 52% (p = 0.05) reductions in MRSA and P. aeruginosa biofilm formation, respectively. Further, a 58% (p < 0.01) reduction was demonstrated on micro-patterned surfaces for P. aeruginosa biofilms under clinically-simulated conditions when compared to un-patterned controls. CONCLUSIONS: This engineered micro-pattern reduces the colonization and biofilm formation of key VAP-associated pathogens in vitro. Future application of this micro-pattern on endotracheal tubes may prevent or prolong the onset of VAP without the need for antimicrobial agents.

17.
Langmuir ; 29(42): 13023-30, 2013 10 22.
Article in English | MEDLINE | ID: mdl-24044383

ABSTRACT

We have developed a model for the prediction of cell attachment to engineered microtopographies based on two previous models: the attachment point theory and the engineered roughness index (ERI) model. The new surface energetic attachment (SEA) model is based on both the properties of the cell-material interface and the size and configuration of the topography relative to the organism. We have used Monte Carlo simulation to examine the SEA model's ability to predict relative attachment of the green alga Ulva linza to different locations within a unit cell. We have also compared the predicted relative attachment for Ulva linza, the diatom Navicula incerta, the marine bacterium Cobetia marina, and the barnacle cyprid Balanus amphitrite to a wide variety of microtopographies. We demonstrate good correlation between the experimental results and the model results for all tested experimental data and thus show the SEA model may be used as a powerful indicator of the efficacy for antifouling topographies.


Subject(s)
Biofouling/prevention & control , Animals , Cell Adhesion , Diatoms/cytology , Halomonadaceae/cytology , Models, Molecular , Monte Carlo Method , Particle Size , Surface Properties , Thoracica/cytology , Ulva/cytology
18.
Curr Eye Res ; 37(5): 372-80, 2012 May.
Article in English | MEDLINE | ID: mdl-22458783

ABSTRACT

PURPOSE: Chemically defined bioadhesives (CDB) are "two-component reactive adhesives" made from antibiotic food additives. They contain no animal-derived ingredients and are characterized by a high level of self-degradability, low toxicity, and strong bonding properties. Amniotic membrane (AM) transplantation is used to repair severe ocular surface disease in humans and horses. AM requires meticulous suturing to the injured cornea. The purpose of this study is to determine whether CDB can facilitate the suture-less placement and adherence of equine AM to porcine cadaver cornea. DESIGN: Prospective study. MATERIALS AND METHODS: To determine whether there are differences in ex vivo adhesion force between equine AM bonded with CDB to porcine cadaver cornea and equine AM sutured to porcine cadaver cornea. The following groups were tested (n = 5 per group): (1) CDB group: trephined (8 mm in diameter) cornea was bonded with CDB to 8-mm-sized discs of AM. (2) Suture group: the 8-mm trephined cornea was sutured with 8-0 absorbable suture to the AM. (3) Control group 1: two sheets of nitrocellulose paper were bonded with CDB. (4) Control group 2: two sheets of nitrocellulose paper were attached with suture and tested. Each sample was anchored to a tensiometer materials testing machine, and the strength of adhesion measured and expressed in units of kilogram-force (kgf). RESULTS: Mean ± SD strength of adhesion force found no statistically significant difference between CDB group (0.091 ± 0.054 kgf; 15 min of CDB adhesion time) and suture groups (0.095 ± 0.037 kgf), whereas there was significant difference (P < 0.05) between control group 1 (0.679 ± 0.048 kgf) and control group 2 (0.585 ± 0.092 kgf). These results revealed that the 15 min of CDB adhesive time had adhesive properties as strong as suture group. CONCLUSIONS AND CLINICAL RELEVANCE: CDB provides a satisfactory level of adherence to ex vivo suture-less attachment of equine amniotic membrane transplantation to the porcine cornea.


Subject(s)
Adhesives/administration & dosage , Amnion/transplantation , Cornea/surgery , Corneal Ulcer/surgery , Suture Techniques/instrumentation , Sutures , Adhesives/chemistry , Animals , Cornea/pathology , Corneal Ulcer/pathology , Disease Models, Animal , Horses , Prospective Studies , Swine , Wound Healing
19.
Biofouling ; 27(8): 881-91, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21882899

ABSTRACT

Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.


Subject(s)
Biofouling/prevention & control , Silicone Elastomers , Spores/physiology , Ulva/physiology , Kinetics
20.
Langmuir ; 27(22): 13754-61, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21870797

ABSTRACT

A thiol-ene polymerization was accomplished on silicate glass slides to graft a series of homopolymers and copolymers using 3-(mercaptopropyl)trimethoxysilane (MTS) as both a silane coupling agent and initiator. MTS was initially covalently bonded to an acid cleaned glass surface via a classical sol-gel reaction. Poly(acrylic acid) (PAA), poly(acrylamide) (PAAm), poly(methyl acrylate) (PMA), poly(acrylamido-2-methyl-propanesulfonic acid) (PAMPS), and the copolymer poly(AA-co-AAm-co-MA-co-AMPS) were grafted from the thiol group of MTS. The surface chemistry of the MTS modified slides and polymer grafts was characterized with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Surface texture was evaluated with tapping mode atomic force microscopy (TM-AFM). The Owens-Wendt-Kaelble (OWK) and Lifshitz-van der Waals acid-base (LW-AB) methods were used to evaluate surface energies by sessile drop contact angle method. The synthetic approach demonstrated a facile, rapid method for grafting to glass surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL