Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oncologist ; 28(3): e145-e155, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36719033

ABSTRACT

BACKGROUND: Cancer and anti-cancer treatment (ACT) may be risk factors for severe SARS-CoV-2 infection and limited vaccine efficacy. Long-term longitudinal studies are needed to evaluate these risks. The Scottish COVID cancer immunity prevalence (SCCAMP) study characterizes the incidence and outcomes of SARS-CoV-2 infection and vaccination in patients with solid tumors undergoing ACT. This preliminary analysis includes 766 patients recruited since May 2020. METHODS: Patients with solid-organ cancers attending secondary care for active ACT consented to the collection of routine electronic health record data and serial blood samples over 12 months. Blood samples were tested for total SARS-CoV-2 antibody. RESULTS: A total of 766 participants were recruited between May 28, 2020 and October 31, 2021. Most received cytotoxic chemotherapy (79%). Among the participants, 48 (6.3%) were tested positive for SARS-CoV-2 by PCR. Infection rates were unaffected by ACT, largely aligning with the local population. Mortality proportion was not higher with a recent positive SARS-CoV-2 PCR (10.4% vs 10.6%). Multivariate analysis revealed lower infection rates in vaccinated patients regardless of chemotherapy (HR 0.307 [95% CI, 0.144-0.6548]) or immunotherapy (HR 0.314 [95% CI, 0.041-2.367]) treatment. A total of 96.3% of patients successfully raised SARS-CoV-2 antibodies after >2 vaccines. This was independent of the treatment type. CONCLUSION: This is the largest on-going longitudinal real-world dataset of patients undergoing ACT during the early stages of the COVID-19 pandemic. This preliminary analysis demonstrates that patients with solid tumors undergoing ACT have high protection from SARS-CoV-2 infection following COVID-19 vaccination. The SCCAMP study will evaluate long-term COVID-19 antibody trends, focusing on specific ACTs and patient subgroups.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Longitudinal Studies , Pandemics , Immunity , Scotland/epidemiology , Vaccination , Neoplasms/drug therapy , Neoplasms/epidemiology
2.
Plants (Basel) ; 9(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202786

ABSTRACT

Specific weight (SW) is a long-established measure used as a malting quality specification in barley, with an increased SW thought to result in a higher malt output. Specific weight is a product of individual grain density as determined by grain composition and structure, and grain packing efficiency in a container as determined by grain dimensions. We investigated the effect of moderate but prolonged post-anthesis water stress on barley plant and grain development using pots of cultivars with a known range of SWs to explore how altering plant growth influence SW. Water stress was expected to influence these grain characteristics through decreased photosynthetic capacity. We demonstrated that SW was maintained under water stress conditions through compensatory mechanisms such as increased tiller mortality which preserved grain physical parameters on the main shoots. However, water stress significantly affected plant development by reducing not only ear number and yield, but also grain filling duration, plant biomass and ear length. Grain composition was also altered, with water-stressed plants having reduced carbon:nitrogen. Therefore, although SW can be conserved under water-stressed conditions, grain composition and plant development are altered, producing smaller harvests with higher grain nitrogen content. This would result in bulks of malting barley having different malt outputs despite having the same SW.

3.
Plant Physiol Biochem ; 155: 346-356, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32798903

ABSTRACT

Tree bark is rich in commercially valuable secondary metabolites such as polyphenolic compounds like flavonoids and tannins. The yield and composition of bark extractives from Abies alba varies longitudinally within the stem. A. alba bark above the crown had the greatest extractive content, but the concentration of polyphenolic compounds was greatest below the crown. Here, we use a nonlinear model describing how bark extractive yields of A. alba, Picea abies and Pseudotsuga menziesii change with height, where differences among species are accounted for using different model coefficients. For all species there is longitudinal variability in extract yield. For P. abies and P. menziesii, the form of that variation differs depending on whether the bark was located at the same position in the stem as branches. Although the relationship form of total extractive yield differs between branched and un-branched samples, the relationship forms for individual compound yields does not change depending on branch presence. Despite trees from thinned stands having longer crowns and faster growth rates, indicative of greater photosynthetic activity, there was no evidence that thinning had affected either the yield or composition of extractives in these species. In P. abies, the proportions of flavonoids was higher in bark from the top of the tree, whereas epi-gallocatechin gallate was found in high proportions at the stem base. In P. menziesii bark extracts, taxifolin was the dominant compound, present in significantly higher proportions in bark towards the base of the stem.


Subject(s)
Abies , Phenols/chemistry , Phytochemicals/chemistry , Picea , Plant Bark/chemistry , Pseudotsuga , Trees
4.
Front Plant Sci ; 11: 614334, 2020.
Article in English | MEDLINE | ID: mdl-33574825

ABSTRACT

This paper explores the links between genotype, plant development, plant structure and plant material properties. The barley husk has two organs, the lemma and the palea, which protect the grain. When the husk is exposed to mechanical stress, such as during harvesting, it can be damaged or detached. This is known as grain skinning, which is detrimental to grain quality and has a significant economic impact on industry. This study focused on the lemma, the husk organ which is most susceptible to grain skinning. This study tested three hypotheses: (1) genotype and plant development determine lemma structure, (2) lemma structure influences the material properties of the lemma, and (3) the material properties of the lemma determine grain skinning risk. The effect of genotype was investigated by using plant material from four malting barley varieties: two with a high risk of grain skinning, two with a low risk. Plant material was assessed at two stages of plant development (anthesis, GS 65; grain filling, GS 77). Structure was assessed using light microscopy to measure three physiological features: thickness, vasculature and cell area. Material properties were approximated using a controlled impact assay and by analyzing fragmentation behavior. Genotype had a significant effect on lemma structure and material properties from anthesis. This indicates that differences between genotypes were established during floral development. The lemma was significantly thinner in high risk genotypes, compared to low risk genotypes. Consequently, in high risk genotypes, the lemma was significantly more likely to fragment. This indicates a relationship between reduced lemma thickness and increased fragmentation. Traditionally, a thin husk has been considered beneficial for malting quality, due to an association with malt extract. However, this study finds a thin lemma is less resistant to mechanical stress. This may explain the differences in grain skinning risk in the genotypes studied.

5.
J Plant Physiol ; 243: 153054, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31648109

ABSTRACT

Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.


Subject(s)
Ethylenes/metabolism , Hordeum/physiology , Organophosphorus Compounds/pharmacology , Plant Growth Regulators/pharmacology , Seeds/physiology , Thiosulfates/pharmacology , Adhesiveness , Ethylenes/antagonists & inhibitors , Gene Expression/physiology , Hordeum/genetics , Permeability , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Front Plant Sci ; 10: 672, 2019.
Article in English | MEDLINE | ID: mdl-31178883

ABSTRACT

The caryopses of barley become firmly adhered to the husk during grain development through a cuticular cementing layer on the caryopsis surface. The degree of this attachment varies among cultivars, with poor quality adhesion causing "skinning", an economically significant grain quality defect for the malting industry. Malting cultivars encompassing a range of husk adhesion qualities were grown under a misting treatment known to induce skinning. Development of the cementing layer was examined by electron microscopy and compositional changes of the cementing layer were investigated with gas-chromatography followed by mass spectroscopy. Changes in gene expression during adhesion development were examined with a custom barley microarray. The abundance of transcripts involved early in cuticular lipid biosynthesis, including those encoding acetyl-CoA carboxylase, and all four members of the fatty acid elongase complex of enzymes, was significantly higher earlier in caryopsis development than later. Genes associated with subsequent cuticular lipid biosynthetic pathways were also expressed higher early in development, including the decarbonylation and reductive pathways, and sterol biosynthesis. Changes in cuticular composition indicate that lowered proportions of alkanes and higher proportions of fatty acids are associated with development of good quality husk adhesion, in addition to higher proportions of sterols.

7.
Plant Physiol Biochem ; 139: 428-434, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30991260

ABSTRACT

The xyloglucans of monocotyledons are known to vary in the abundance of fucosylated side chains, with most commelinid monocotyledons having xyloglucans with lower proportions than non-commelinid monocotyledons. In many commelinid species, and some non-commelinid species that have lower proportions of fucosylated side chains, these side chains have been shown to be cell-type specific. To determine whether it is just the fucosylated side chains that are cell-type specific, or whether xyloglucan is cell-type specific in these species, we used the monoclonal antibody LM15 in conjunction with immmunofluorescence microscopy. We examined the distribution of cell-wall labelling among cell types in these species. The primary walls of all cell types were shown to contain xyloglucans in all species that had cell-type specific distributions of fucosylated side chains. This indicates that it is the fucosylated side chains of xyloglucans that is cell-type specific. Although the functional significance of xyloglucan fucosylation remains unknown, such cell-type specificity supports hypotheses that the fucosylated side chains may indeed have a functional role within the cell wall.


Subject(s)
Cell Wall/metabolism , Glucans/metabolism , Microscopy, Fluorescence/methods , Xylans/metabolism , Antibodies, Monoclonal , Glycosylation
8.
Plant Physiol Biochem ; 139: 587-590, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31030026

ABSTRACT

Good quality husk-caryopsis adhesion is essential for malting barley, but that quality is influenced by caryopsis surface lipid composition. Raman spectroscopy was applied to lipid extracts from barley caryopses of cultivars with differential adhesion qualities. Principal component regression indicated that Raman spectroscopy can distinguish among cultivars with good and poor quality adhesion due to differences in compounds associated with adhesion quality.


Subject(s)
Edible Grain/metabolism , Hordeum/metabolism , Spectrum Analysis, Raman/methods
9.
J Sci Food Agric ; 99(5): 2548-2555, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30387179

ABSTRACT

BACKGROUND: Specific weight influences the market value of barley grain, and in malting barley a high specific weight is thought to result in an increased malt output. However, links between specific weight and malt output have not yet been established. We hypothesised that packing efficiency and grain density will each contribute to specific weight. These traits would have implications for the malting process, highlighting the need for understanding what grain traits contribute to specific weight, before we can predict its effect on malting performance and efficiency. RESULTS: We report that specific weight is a product of grain density and packing efficiency, in our study proportionally contributing 48.5% and 36.5% to variation in specific weight, respectively. We report that packing efficiency is determined by grain dimensions, and is negatively correlated with the sum of grain length and depth. Therefore shorter, thinner grains can result in an increased specific weight, which is likely to be detrimental for malting performance. We also demonstrate that among cultivars which have grains with contrasting size traits, the same specific weight can be achieved through differing grain densities. CONCLUSIONS: Our results demonstrate that both grain dimensions and grain density must be considered jointly to optimise specific weight, and that the relationship between specific weight and malting performance and efficiency needs to be carefully considered with respect to how a high specific weight is achieved. © 2018 Society of Chemical Industry.


Subject(s)
Hordeum/chemistry , Seeds/chemistry , Edible Grain/chemistry , Food Handling , Food Packaging , Hordeum/growth & development , Seeds/growth & development
10.
Mol Plant ; 4(1): 144-56, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20978085

ABSTRACT

Xyloglucans in the non-lignified primary cell walls of different species of monocotyledons have diverse structures, with widely varying proportions of oligosaccharide units that contain fucosylated side chains (F side chains). To determine whether fucosylated xyloglucans occur in all non-lignified walls in a range of monocotyledon species, we used immunofluorescence microscopy with the monoclonal antibody CCRC-M1. The epitope of this antibody, α-L-Fucp-(1→2)-ß-D-Galp, occurs in F side chains. In most non-commelinid monocotyledons, the epitope was found in all non-lignified walls. A similar distribution was found in the palm Phoenix canariensis, which is a member of the basal commelinid order Arecales. However, in the other commelinid orders Zingiberales, Commelinales, and Poales, the occurrence of the epitope was restricted, sometimes occurring in only the phloem walls, but often also in walls of other cell types including stomatal guard and subsidiary cells and raphide idioblasts. No epitope was found in the walls of the commelinids Tradescantia virginiana (Commelinaceae, Commelinales) and Zea mays (Poaceae, Poales), but it occurred in the phloem walls of two other Poaceae species, Lolium multiflorum and L. perenne. The distribution of the epitope is discussed in relation to xyloglucan structures in the different taxa. However, the functional significance of the restricted distributions is unknown.


Subject(s)
Cell Wall/metabolism , Glucans/metabolism , Magnoliopsida/metabolism , Xylans/metabolism , Cell Wall/chemistry , Glucans/analysis , Magnoliopsida/chemistry , Microscopy, Fluorescence , Xylans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...