Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 52(1): 35-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38385340

ABSTRACT

Recombinant adeno-associated virus (AAV)-mediated degeneration of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) has been observed in non-human primates (NHPs) following intravenous (IV) and intrathecal (IT) delivery. Administration of recombinant AAV encoding a human protein transgene via a single intra-cisterna magna (ICM) injection in New Zealand white rabbits resulted in histopathology changes very similar to NHPs: mononuclear cell infiltration, degeneration/necrosis of sensory neurons, and nerve fiber degeneration of sensory tracts in the spinal cord and of multiple nerves. AAV-associated clinical signs and incidence/severity of histologic findings indicated that rabbits were equally or more sensitive than NHPs to sensory neuron damage. Another study using human and rabbit transgene constructs of the same protein demonstrated comparable changes suggesting that the effects are not an immune response to the non-self protein transgene. Rabbit has not been characterized as a species for general toxicity testing of AAV gene therapies, but these studies suggest that it may be an alternative model to investigate mechanisms of AAV-mediated neurotoxicity and test novel AAV designs mitigating these adverse effects.


Subject(s)
Dependovirus , Ganglia, Spinal , Animals , Rabbits , Dependovirus/genetics , Genetic Vectors , Male , Humans , Transgenes , Female , Sensory Receptor Cells
2.
Neurosci Res ; 176: 73-78, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34624412

ABSTRACT

CDKL5 Deficiency Disorder (CDD) is a severe encephalopathy characterized by intractable epilepsy, infantile spasms, and cognitive disabilities. The detrimental CNS manifestations and lack of therapeutic interventions represent unmet needs, necessitating identification of CDD-dependent phenotypes for in vitro disease modeling and therapeutic testing. Here, we optimized a high-content assay to quantify cilia in CDKL5-deficient neurons. Our work shows that Cdkl5-knockdown neurons have elongated cilia and uncovers cilium lengthening in hippocampi of Cdkl5 knockout mice. Collectively, our findings identify cilia length alterations under CDKL5 activity loss in vitro and in vivo and reveal elongated cilia as a robust functional phenotype for CDD.


Subject(s)
Epileptic Syndromes , Protein Serine-Threonine Kinases , Animals , Cilia , Epileptic Syndromes/genetics , Mice , Neurons , Phenotype , Protein Serine-Threonine Kinases/genetics
3.
Int J Mol Sci ; 20(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331039

ABSTRACT

Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.


Subject(s)
Calcium Channels/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mental Disorders/genetics , Animals , Biomarkers , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels/chemistry , Calcium Channels/metabolism , Clinical Trials as Topic , Gene Expression Regulation , Humans , Ion Channel Gating/drug effects , Mental Disorders/diagnosis , Mental Disorders/drug therapy , Mental Disorders/metabolism , Molecular Targeted Therapy , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL