Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Geophys ; 58(4): e2019RG000678, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33015673

ABSTRACT

We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.

2.
Geophys Res Lett ; 45(2): 1133-1140, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29503484

ABSTRACT

Bretherton et al. (2004) used the Special Sensor Microwave Imager (SSM/I) version 5 product to derive an exponential curve that describes the relationship between precipitation and column relative humidity (CRH) over the tropical oceans. The curve, which features a precipitation pickup at a CRH of about 0.75 and a rapid increase of precipitation with CRH after the pickup, has been widely used in the studies of the tropical atmosphere. This study re-examines the moisture-precipitation relationship by using the version 7 SSM/I data, in which several biases in the previous version are corrected, and evaluates the relationship in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. In the revised exponential curve derived using the updated satellite data, the precipitation pick-up occurs at a higher CRH (~0.8), and precipitation increases more slowly with CRH than in the previous curve. In most CMIP5 models, the precipitation pickup is too early due to the common model bias of overestimated (underestimated) precipitation in the dry (wet) regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...