Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Signal ; 17(841): eadi4747, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38889226

ABSTRACT

G protein-coupled receptors (GPCRs) regulate cellular signaling processes by coupling to diverse combinations of heterotrimeric G proteins composed of Gα, Gß, and Gγ subunits. Biosensors based on bioluminescence resonance energy transfer (BRET) have advanced our understanding of GPCR functional selectivity. Some BRET biosensors monitor ligand-induced conformational changes in the receptor or G proteins, whereas others monitor the recruitment of downstream effectors to sites of G protein activation. Here, we compared the ability of conformation-and activation-based BRET biosensors to assess the coupling of various class A and B GPCRs to specific Gα proteins in cultured cells. These GPCRs included serotonin 5-HT2A and 5-HT7 receptors, the GLP-1 receptor (GLP-1R), and the M3 muscarinic receptor. We observed different signaling profiles between the two types of sensors, highlighting how data interpretation could be affected by the nature of the biosensor. We also found that the identity of the Gßγ subunits used in the assay could differentially influence the selectivity of a receptor toward Gα subtypes, emphasizing the importance of the receptor-Gßγ pairing in determining Gα coupling specificity. Last, the addition of epitope tags to the receptor could affect stoichiometry and coupling selectivity and yield artifactual findings. These results highlight the need for careful sensor selection and experimental design when probing GPCR-G protein coupling.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , Biosensing Techniques , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Bioluminescence Resonance Energy Transfer Techniques/methods , HEK293 Cells , Biosensing Techniques/methods , Protein Conformation , Signal Transduction , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics
2.
Commun Biol ; 7(1): 250, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429428

ABSTRACT

Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Signal Transduction , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism
3.
Mol Pharmacol ; 102(3): 139-149, 2022 09.
Article in English | MEDLINE | ID: mdl-35779859

ABSTRACT

Activation of G protein-coupled receptors by agonists may result in the activation of one or more G proteins and recruitment of arrestins. The extent of the activation of each of these pathways depends on the intrinsic efficacy of the ligand. Quantification of intrinsic efficacy relative to a reference compound is essential for the development of novel compounds. In the operational model, changes in efficacy can be compensated by changes in the "functional" affinity, resulting in poorly defined values. To separate the effects of ligand affinity from the intrinsic activity of the receptor, we developed a Michaelis-Menten based quantification of G protein activation bias that uses experimentally measured ligand affinities and provides a single measure of ligand efficacy. We used it to evaluate the signaling of a promiscuous model receptor, the Vasopressin V2 receptor (V2R). Using BRET-based biosensors, we show that the V2R engages many different G proteins across all G protein subfamilies in response to its primary endogenous agonist, arginine vasopressin, including Gs and members of the Gi/o and G12/13 families. These signaling pathways are also activated by the synthetic peptide desmopressin, oxytocin, and the nonmammalian hormone vasotocin. We compared bias quantification using the operational model with Michaelis-Menten based quantification; the latter accurately quantified ligand efficacies despite large difference in ligand affinities. Together, these results showed that the V2R is promiscuous in its ability to engage several G proteins and that its' signaling profile is biased by small structural changes in the ligand. SIGNIFICANCE STATEMENT: By modelling the G protein activation as Michaelis-Menten reaction, we developed a novel way of quantifying signalling bias. V2R activates, or at least engages, G proteins from all G protein subfamilies, including Gi2, Gz, Gq, G12, and G13. Their relative activation may explain its Gs-independent signalling.


Subject(s)
Receptors, Vasopressin , Signal Transduction , Arrestins/metabolism , GTP-Binding Proteins/metabolism , Humans , Ligands
4.
Eur J Pharmacol ; 927: 175043, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35598847

ABSTRACT

Prostaglandins are bioactive lipids involved in many physiological and pathophysiological conditions, such as pain, atherosclerosis, type II diabetes, and parturition. Prostaglandin E2 (PGE2) activates four G protein-coupled receptors (GPCRs), named the PGE2 types 1-4 receptors (EP1-4), to elicit the intracellular signaling responsible for their physiological actions. There are more than twelve EP3 isoforms in humans that differ only by the sequence of their C-termini. However, the signaling mechanisms engaged by the various isoforms have never been clearly defined. In this study, we used a recently described BRET-based biosensor technology to define the signaling profiles for each of the human isoforms on a selection of signaling pathways using the agonists, PGE2 and sulprostone, and the purportedly EP3-specific antagonist L798106. We found that L798106 is a biased agonist of the Gαz pathway for some human EP3 isoforms, an effect that is not detected in the close ortholog mouse EP3 isoform α. We also found that the presence of a threonine residue at position 107 in the binding site of human EP3, which is a serine in most other species including mice, is important for L798106-mediated Gαz efficacy. Given the reported importance of EP3-Gαz signaling on the potential therapeutic efficacy of EP3 and since many preclinical studies for these mechanisms have been performed in rodents, this finding demonstrates the importance of determining a detailed signaling profile of ligands for different species and receptor isoforms, which constitutes an important step to better understand the therapeutic potential of the EP3.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Mice , Pain , Protein Isoforms/metabolism , Receptors, Prostaglandin E/metabolism , Signal Transduction
5.
Elife ; 112022 03 18.
Article in English | MEDLINE | ID: mdl-35302493

ABSTRACT

The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and ßarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.


Subject(s)
Biosensing Techniques , GTP-Binding Proteins , Biosensing Techniques/methods , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , beta-Arrestin 1/metabolism , beta-Arrestins/metabolism
6.
Chem Sci ; 12(33): 10990-11003, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34522296

ABSTRACT

Brain functions rely on neurotransmitters that mediate communication between billions of neurons. Disruption of this communication can result in a plethora of psychiatric and neurological disorders. In this work, we combine molecular dynamics simulations, live-cell biosensor and electrophysiological assays to investigate the action of the neurotransmitter dopamine at the dopaminergic D2 receptor (D2R). The study of dopamine and closely related chemical probes reveals how neurotransmitter binding translates into the activation of distinct subsets of D2R effectors (i.e.: Gi2, GoB, Gz and ß-arrestin 2). Ligand interactions with key residues in TM5 (S5.42) and TM6 (H6.55) in the D2R binding pocket yield a dopamine-like coupling signature, whereas exclusive TM5 interaction is typically linked to preferential G protein coupling (in particular GoB) over ß-arrestin. Further experiments for serotonin receptors indicate that the reported molecular mechanism is shared by other monoaminergic neurotransmitter receptors. Ultimately, our study highlights how sequence variation in position 6.55 is used by nature to fine-tune ß-arrestin recruitment and in turn receptor signaling and internalization of neurotransmitter receptors.

7.
Cell Rep ; 35(11): 109246, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133934

ABSTRACT

Succinate functions both as a classical TCA cycle metabolite and an extracellular metabolic stress signal sensed by the mainly Gi-coupled succinate receptor SUCNR1. In the present study, we characterize and compare effects and signaling pathways activated by succinate and both classes of non-metabolite SUCNR1 agonists. By use of specific receptor and pathway inhibitors, rescue in G-protein-depleted cells and monitoring of receptor G protein activation by BRET, we identify Gq rather than Gi signaling to be responsible for SUCNR1-mediated effects on basic transcriptional regulation. Importantly, in primary human M2 macrophages, in which SUCNR1 is highly expressed, we demonstrate that physiological concentrations of extracellular succinate act through SUCNR1-activated Gq signaling to efficiently regulate transcription of immune function genes in a manner that hyperpolarizes their M2 versus M1 phenotype. Thus, sensing of stress-induced extracellular succinate by SUCNR1 is an important transcriptional regulator in human M2 macrophages through Gq signaling.


Subject(s)
Extracellular Space/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Macrophages/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Succinic Acid/metabolism , Arrestins/metabolism , Female , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , Gene Ontology , HEK293 Cells , Humans , Ligands , Macrophages/immunology , Male , Models, Biological , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Transcriptional Activation/genetics , Type C Phospholipases/metabolism
8.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33990469

ABSTRACT

G protein-coupled receptors (GPCRs) are gatekeepers of cellular homeostasis and the targets of a large proportion of drugs. In addition to their signaling activity at the plasma membrane, it has been proposed that their actions may result from translocation and activation of G proteins at endomembranes-namely endosomes. This could have a significant impact on our understanding of how signals from GPCR-targeting drugs are propagated within the cell. However, little is known about the mechanisms that drive G protein movement and activation in subcellular compartments. Using bioluminescence resonance energy transfer (BRET)-based effector membrane translocation assays, we dissected the mechanisms underlying endosomal Gq trafficking and activity following activation of Gq-coupled receptors, including the angiotensin II type 1, bradykinin B2, oxytocin, thromboxane A2 alpha isoform, and muscarinic acetylcholine M3 receptors. Our data reveal that GPCR-promoted activation of Gq at the plasma membrane induces its translocation to endosomes independently of ß-arrestin engagement and receptor endocytosis. In contrast, Gq activity at endosomes was found to rely on both receptor endocytosis-dependent and -independent mechanisms. In addition to shedding light on the molecular processes controlling subcellular Gq signaling, our study provides a set of tools that will be generally applicable to the study of G protein translocation and activation at endosomes and other subcellular organelles, as well as the contribution of signal propagation to drug action.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Endocytosis/physiology , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , Receptors, G-Protein-Coupled/physiology , HEK293 Cells , Humans , Rho Guanine Nucleotide Exchange Factors/physiology , Signal Transduction/physiology , beta-Arrestins/physiology
9.
Sci Rep ; 10(1): 8779, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471984

ABSTRACT

A comprehensive understanding of signalling downstream of GPCRs requires a broad approach to capture novel signalling modalities in addition to established pathways. Here, using an array of sixteen validated BRET-based biosensors, we analyzed the ability of seven different ß-adrenergic ligands to engage five distinct signalling pathways downstream of the ß1-adrenergic receptor (ß1AR). In addition to generating signalling signatures and capturing functional selectivity for the different ligands toward these pathways, we also revealed coupling to signalling pathways that have not previously been ascribed to the ßAR. These include coupling to Gz and G12 pathways. The signalling cascade linking the ß1AR to calcium mobilization was also characterized using a combination of BRET-based biosensors and CRISPR-engineered HEK 293 cells lacking the Gαs subunit or with pharmacological or genetically engineered pathway inhibitors. We show that both Gs and G12 are required for the full calcium response. Our work highlights the power of combining signal profiling with genome editing approaches to capture the full complement of GPCR signalling activities in a given cell type and to probe their underlying mechanisms.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Biosensing Techniques/methods , CRISPR-Cas Systems , Calcium/metabolism , Gene Editing , HEK293 Cells , Humans , Ligands , Phenotype , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-2/genetics , Signal Transduction
10.
Nat Chem Biol ; 15(2): 206, 2019 02.
Article in English | MEDLINE | ID: mdl-30573766

ABSTRACT

In the version of this article originally published, the present address for Petr Popov was incorrectly listed as 'Koltech Institute of Science & Technology, Moscow, Russia'. The correct present address is 'Skolkovo Institute of Science and Technology, Moscow, Russia'. The error has been corrected in the HTML and PDF versions of the paper.

11.
Nat Chem Biol ; 15(1): 11-17, 2019 01.
Article in English | MEDLINE | ID: mdl-30510194

ABSTRACT

Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.


Subject(s)
Misoprostol/chemistry , Receptors, Prostaglandin E, EP3 Subtype/chemistry , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Binding Sites , Crystallography, X-Ray , Dinoprostone/analogs & derivatives , Dinoprostone/chemistry , Dinoprostone/metabolism , Humans , Misoprostol/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Conformation , Receptors, Prostaglandin E, EP3 Subtype/agonists , Receptors, Prostaglandin E, EP3 Subtype/genetics , Signal Transduction , Water/chemistry
12.
Mol Pharmacol ; 93(6): 581-591, 2018 06.
Article in English | MEDLINE | ID: mdl-29572336

ABSTRACT

GPR40 is a clinically validated molecular target for the treatment of diabetes. Many GPR40 agonists have been identified to date, with the partial agonist fasiglifam (TAK-875) reaching phase III clinical trials before its development was terminated due to off-target liver toxicity. Since then, attention has shifted toward the development of full agonists that exhibit superior efficacy in preclinical models. Full agonists bind to a distinct binding site, suggesting conformational plasticity and a potential for biased agonism. Indeed, it has been suggested that alternative pharmacology may be required for meaningful efficacy. In this study, we described the discovery and characterization of Compound A, a newly identified GPR40 allosteric full agonist highly efficacious in human islets at potentiating glucose-stimulated insulin secretion. We compared Compound A-induced GPR40 activity to that induced by both fasiglifam and AM-1638, another allosteric full agonist previously reported to be highly efficacious in preclinical models, at a panel of G proteins. Compound A was a full agonist at both the Gαq and Gαi2 pathways, and in contrast to fasiglifam Compound A also induced Gα12 coupling. Compound A and AM-1638 displayed similar activity at all pathways tested. The Gα12/Gα13-mediated signaling pathway has been linked to protein kinase D activation as well as actin remodeling, well known to contribute to the release of insulin vesicles. Our data suggest that the pharmacology of GPR40 is complex and that Gα12/Gα13-mediated signaling, which may contribute to GPR40 agonists therapeutic efficacy, is a specific property of GPR40 allosteric full agonists.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Glucose/metabolism , Insulin Secretion/physiology , Insulin/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Benzofurans/pharmacology , CHO Cells , Cell Line , Cricetulus , HEK293 Cells , Humans , Hypoglycemic Agents/pharmacology , Insulin Secretion/drug effects , Islets of Langerhans/drug effects , Protein Kinase C/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Sulfones/pharmacology
13.
Cell ; 166(4): 907-919, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27499021

ABSTRACT

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Cyclic AMP/metabolism , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , Microscopy, Electron , Multiprotein Complexes , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry
14.
Curr Top Med Chem ; 15(24): 2528-42, 2015.
Article in English | MEDLINE | ID: mdl-26126903

ABSTRACT

Seven transmembrane domain receptors (7TMRs) constitute the largest family of transmembrane proteins in vertebrates and are the targets of more than 40% of currently marketed drugs. It is now accepted that these receptors are highly dynamic "microprocessors" that adopt a continuum of functionally distinct active conformations. The novel concept of biased agonism (or functional selectivity) posits that different ligands stabilize unique receptor conformations with each conformation imparting distinct signaling, and thus biological attributes, to a given receptor. The pharmacotherapeutic potential of biased agonism lies in possibility to develop molecules that selectively engage beneficial pathways while inhibiting or remaining inert towards those producing deleterious outcomes. Various strategies are now applied for the discovery of biased ligands. Many assays use second messenger levels (i.e., calcium, inositol trisphosphate, cAMP) as a quantitative readout of G-protein subtype-specific activity. However, due to complex cross-regulation between the various G-protein pathways, second messenger levels alone are not directly reflective of a ligand's activity on a specific pathway. Consequently, direct measurements of receptor-proximal events (such as G-protein activation and ß-arrestin coupling) are required for a more accurate quantification of ligand's efficacy (or bias) towards different pathways. The discovery that various ligands of the same receptor can display different efficacies and potencies towards different receptor-downstream signaling pathways has not only revitalized the process of 7TMR drug discovery, but has significantly transformed the field of pharmacology as a whole. This review will showcase the current pharmacological toolbox available for the discovery and validation of biased ligands.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Humans , Ligands
15.
Mol Pharmacol ; 85(3): 492-509, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24366668

ABSTRACT

The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the ß2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 ß-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and safety.


Subject(s)
Pharmaceutical Preparations/metabolism , Receptors, Adrenergic, beta-2/metabolism , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Drug Discovery/methods , Endocytosis/physiology , HEK293 Cells , Humans , Ligands , MAP Kinase Signaling System/physiology , Signal Transduction/physiology
16.
Comb Chem High Throughput Screen ; 17(1): 80-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24152227

ABSTRACT

Digital Holographic Microscopy (DHM) is a label-free imaging technique allowing visualization of transparent cells with classical imaging cell culture plates. The quantitative DHM phase contrast image provided is related both to the intracellular refractive index and to cell thickness. DHM is able to distinguish cellular morphological changes on two representative cell lines (HeLa and H9c2) when treated with doxorubicin and chloroquine, two cytotoxic compounds yielding distinct phenotypes. We analyzed parameters linked to cell morphology and to the intracellular content in endpoint measurements and further investigated them with timelapse recording. The results obtained by DHM were compared with other optical label-free microscopy techniques, namely Phase Contrast, Differential Interference Contrast and Transport of Intensity Equation (reconstructed from three bright-field images). For comparative purposes, images were acquired in a common 96-well plate format on the different motorized microscopes. In contrast to the other microscopies assayed, images generated with DHM can be easily quantified using a simple automatized on-the-fly analysis method for discriminating the different phenotypes generated in each cell line. The DHM technology is suitable for the development of robust and unbiased image-based assays.


Subject(s)
Holography/methods , Image Processing, Computer-Assisted , Microscopy, Phase-Contrast/methods , Myocytes, Cardiac/ultrastructure , Animals , Biological Assay , Cell Line , Chloroquine/pharmacology , Cytotoxins/pharmacology , Doxorubicin/pharmacology , HeLa Cells , Humans , Myocytes, Cardiac/drug effects , Phenotype , Rats , Time-Lapse Imaging
17.
Assay Drug Dev Technol ; 11(2): 101-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23062077

ABSTRACT

We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC50 values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.


Subject(s)
Biological Assay/instrumentation , Drug Evaluation, Preclinical/instrumentation , Holography/instrumentation , Imaging, Three-Dimensional/instrumentation , Microscopy, Fluorescence/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Toxicity Tests/instrumentation , Equipment Design , Equipment Failure Analysis , Image Interpretation, Computer-Assisted/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling
18.
Mol Pharmacol ; 81(3): 309-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22108912

ABSTRACT

Activation of G-protein-coupled receptors (GPCRs) results in a variety of cellular responses, such as binding to the same receptor of different ligands that activate distinct downstream cascades. Additional signaling complexity is achieved when two or more receptors are integrated into one signaling unit. Lateral receptor interactions can allosterically modulate the receptor response to a ligand, which creates a mechanism for tissue-specific fine tuning, depending on the cellular receptor coexpression pattern. GPCR homomers or heteromers have been explored widely for GPCR classes A and C but to lesser extent for class B. In the present study, we used bioluminescence resonance energy transfer (BRET) techniques, calcium flux measurements, and microscopy to study receptor interactions within the glucagon receptor family. We found basal BRET interactions for some of the receptor combinations tested that decreased upon ligand binding. A BRET increase was observed exclusively for the gastric inhibitory peptide (GIP) receptor and the glucagon-like peptide 1 (GLP-1) receptor upon binding of GLP-1 that could be reversed with GIP addition. The interactions of GLP-1 receptor and GIP receptor were characterized with BRET donor saturation studies, shift experiments, and tests of glucagon-like ligands. The heteromer displayed specific pharmacological characteristics with respect to GLP-1-induced ß-arrestin recruitment and calcium flux, which suggests a form of allosteric regulation between the receptors. This study provides the first example of ligand-induced heteromer formation in GPCR class B. In the body, the receptors are functionally related and coexpressed in the same cells. The physiological evidence for this heteromerization remains to be determined.


Subject(s)
Glucagon-Like Peptide 1/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Glucagon/metabolism , Allosteric Regulation , Amino Acid Sequence , Cell Line , Endocytosis , Energy Transfer , Glucagon-Like Peptide 1/chemistry , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid
19.
Nat Commun ; 2: 598, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22186894

ABSTRACT

G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3'-5'-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:ßγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades.


Subject(s)
Adaptation, Physiological/genetics , Cyclic AMP-Dependent Protein Kinase Type II/metabolism , Gene Expression Regulation, Fungal/physiology , Receptors, G-Protein-Coupled/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Cloning, Molecular , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Type II/genetics , Escherichia coli , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mutation , Phosphorylation , Plasmids , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transformation, Bacterial
20.
Biophys J ; 99(12): 4037-46, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21156147

ABSTRACT

Bioluminescence resonance energy transfer (BRET) is increasingly being used to monitor protein-protein interactions and cellular events in cells. However, the ability to monitor multiple events simultaneously is limited by the spectral properties of the existing BRET partners. Taking advantage of newly developed Renilla luciferases and blue-shifted fluorescent proteins (FPs), we explored the possibility of creating novel BRET configurations using a single luciferase substrate and distinct FPs. Three new (to our knowledge) BRET assays leading to distinct color bioluminescence emission were generated and validated. The spectral properties of two of the FPs used (enhanced blue (EB) FP2 and mAmetrine) and the selection of appropriate detection filters permitted the concomitant detection of two independent BRET signals, without cross-interference, in the same cells after addition of a unique substrate for Renilla luciferase-II, coelentrazine-400a. Using individual BRET-based biosensors to monitor the interaction between G-protein-coupled receptors and G-protein subunits or activation of different G-proteins along with the production of a second messenger, we established the proof of principle that two new BRET configurations can be multiplexed to simultaneously monitor two dependent or independent cellular events. The development of this new multiplexed BRET configuration opens the way for concomitant monitoring of various independent biological processes in living cells.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/metabolism , Color , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL