Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(44): 11238-11243, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322937

ABSTRACT

In 1990, the Seidmans showed that a single point mutation, R403Q, in the human ß-myosin heavy chain (MHC) of heart muscle caused a particularly malignant form of familial hypertrophic cardiomyopathy (HCM) [Geisterfer-Lowrance AA, et al. (1990) Cell 62:999-1006.]. Since then, more than 300 mutations in the ß-MHC have been reported, and yet there remains a poor understanding of how a single missense mutation in the MYH7 gene can lead to heart disease. Previous studies with a transgenic mouse model showed that the myosin phenotype depended on whether the mutation was in an α- or ß-MHC backbone. This led to the generation of a transgenic rabbit model with the R403Q mutation in a ß-MHC backbone. We find that the in vitro motility of heterodimeric R403Q myosin is markedly reduced, whereas the actin-activated ATPase activity of R403Q subfragment-1 is about the same as myosin from a nontransgenic littermate. Single myofibrils isolated from the ventricles of R403Q transgenic rabbits and analyzed by atomic force microscopy showed reduced rates of force development and relaxation, and achieved a significantly lower steady-state level of isometric force compared with nontransgenic myofibrils. Myofibrils isolated from the soleus gave similar results. The force-velocity relationship determined for R403Q ventricular myofibrils showed a decrease in the velocity of shortening under load, resulting in a diminished power output. We conclude that independent of whether experiments are performed with isolated molecules or with ordered molecules in the native thick filament of a myofibril, there is a loss-of-function induced by the R403Q mutation in ß-cardiac myosin.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Myocardial Contraction/genetics , Myofibrils/genetics , Myosin Heavy Chains/genetics , Myosins/genetics , Point Mutation/genetics , Actins/genetics , Animals , Animals, Genetically Modified/genetics , Heart Ventricles/metabolism , Mice , Myocardium/metabolism , Rabbits
2.
J Biol Chem ; 288(21): 14780-7, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23580644

ABSTRACT

Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the ß-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express α-MHC, whereas the ventricles of larger mammals express predominantly ß-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous α-MHC was partially replaced with transgenically encoded ß-MHC or α-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for α-S1 (100 µM) is ~ 4-fold weaker than for ß-S1 (25 µM). Correspondingly, the MgADP release rate for α-S1 (350 s(-1)) is ~3-fold greater than for ß-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for ß-S1, but R403Q in α-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.


Subject(s)
Adenosine Diphosphate/metabolism , Mutation, Missense , Myosin Heavy Chains/metabolism , Ventricular Myosins/metabolism , Adenosine Diphosphate/genetics , Amino Acid Substitution , Animals , Kinetics , Mice , Mice, Transgenic , Myosin Heavy Chains/genetics , Protein Binding/genetics , Ventricular Myosins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL