Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Med Entomol ; 58(2): 873-879, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33710315

ABSTRACT

Following the recent discovery of Bourbon virus (BRBV) as a human pathogen, and the isolation of the virus from Amblyomma americanum (L.) collected near the location of a fatal human case, we undertook a series of experiments to assess the laboratory vector competence of this tick species for BRBV. Larval ticks were infected using an immersion technique, and transstadial transmission of virus to the nymphal and then to the adult stages was demonstrated. Transstadially infected nymphs transmitted virus to adult ticks at very high rates during cofeeding, indicating the presence of infectious virus in the saliva of engorging ticks. Vertical transmission by transstadially infected females to their progeny occurred, but at a low rate. Rabbits fed on by infected ticks of all active life stages developed high titers of antibody to the virus, demonstrating host exposure to BRBV antigens/live virus during tick blood feeding. These results demonstrate that A. americanum is a competent vector of BRBV and indicate that cofeeding could be critical for enzootic maintenance.


Subject(s)
Amblyomma/virology , Orthomyxoviridae Infections/transmission , Thogotovirus , Animal Experimentation , Animals , Arachnid Vectors/virology , Disease Vectors , Ixodidae/virology , Rabbits , Saliva/virology
2.
J Med Entomol ; 57(3): 927-932, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31819966

ABSTRACT

The white-footed mouse, Peromyscus leucopus (Rafinesque), is a reservoir for the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern half of the United States, where the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), is the primary vector. In the Midwest, an additional Lyme disease spirochete, Borrelia mayonii, was recorded from naturally infected I. scapularis and P. leucopus. However, an experimental demonstration of reservoir competence was lacking for a natural tick host. We therefore experimentally infected P. leucopus with B. mayonii via I. scapularis nymphal bites and then fed uninfected larvae on the mice to demonstrate spirochete acquisition and passage to resulting nymphs. Of 23 mice fed on by B. mayonii-infected nymphs, 21 (91%) developed active infections. The infection prevalence for nymphs fed as larvae on these infected mice 4 wk post-infection ranged from 56 to 98%, and the overall infection prevalence for 842 nymphs across all 21 P. leucopus was 75% (95% confidence interval, 72-77%). To assess duration of infectivity, 10 of the P. leucopus were reinfested with uninfected larval ticks 12 wk after the mice were infected. The overall infection prevalence for 480 nymphs across all 10 P. leucopus at the 12-wk time point was 26% (95% confidence interval, 23-31%), when compared with 76% (95% confidence interval, 71-79%) for 474 nymphs from the same subset of 10 mice at the 4-wk time point. We conclude that P. leucopus is susceptible to infection with B. mayonii via bite by I. scapularis nymphs and an efficient reservoir for this Lyme disease spirochete.


Subject(s)
Arachnid Vectors/microbiology , Disease Reservoirs , Ixodes/microbiology , Lyme Disease/transmission , Peromyscus/microbiology , Spirochaetales/physiology , Animals , Arachnid Vectors/growth & development , Borrelia Infections/transmission , Ixodes/growth & development , Larva/growth & development , Larva/microbiology , Nymph/growth & development , Nymph/microbiology , Peromyscus/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL