Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 518: 110989, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32835784

ABSTRACT

The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 µg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.


Subject(s)
Hydrocortisone/administration & dosage , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 5/genetics , Liver/metabolism , Salmo salar/growth & development , Animals , Dose-Response Relationship, Drug , Drug Implants/chemistry , Gene Expression Regulation, Developmental/drug effects , Growth Hormone/blood , Hydrocortisone/pharmacology , Injections, Intraperitoneal , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Liver/growth & development , Salmo salar/genetics , Seawater/chemistry
2.
Gen Comp Endocrinol ; 179(1): 22-9, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22820350

ABSTRACT

Growth hormone (GH) regulates essential physiological functions in teleost fishes, including growth, metabolism, and osmoregulation. Recent studies have identified two clades of putative receptors for GH (GHR1 clade and GHR2 clade) in fishes, both of which are highly expressed in the liver. Moreover, the liver is an important target for the anabolic effects of GH via endocrine IGFs, and liver sensitivity to GH is modulated by metabolic hormones. We investigated the effects of GH, insulin, glucagon, cortisol and triiodothyronine on GHR1 and GHR2 mRNA levels in primary cultured tilapia hepatocytes. Physiological concentrations of GH strongly stimulated GHR2 mRNA level (0.5-50×10(-9) M), but did not affect GHR1 mRNA level. Insulin suppressed stimulation of GHR2 mRNA level by GH (10(-8)-10(-6) M). Insulin increased basal GHR1 mRNA level (10(-8)-10(-6) M). Cortisol increased basal GHR2 mRNA level (10(-7)-10(-6) M), but did not consistently affect GH-stimulated GHR2 mRNA level. Cortisol increased basal GHR1 mRNA level (10(-9)-10(-6) M). Glucagon suppressed GH-stimulated GHR2 mRNA level and increased basal GHR1 mRNA level at a supraphysiological concentration (10(-6) M). A single injection of GH (5 µg/g) increased liver GHR2 mRNA level, and insulin injection (5 µg/g) decreased both basal and GH-stimulated GHR2 mRNA levels after 6 h. In contrast, insulin and GH injection had little effect on liver GHR1 mRNA level. This study shows that GHR1 and GHR2 gene expression are differentially regulated by physiological levels of GH and insulin in tilapia primary hepatocytes.


Subject(s)
Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Growth Hormone/pharmacology , Receptors, Somatotropin/metabolism , Tilapia/metabolism , Animals , Cells, Cultured , Fish Proteins/genetics , Glucagon/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hydrocortisone/pharmacology , Insulin/pharmacology , RNA, Messenger/metabolism , Receptors, Somatotropin/genetics , Tilapia/genetics
3.
J Endocrinol ; 209(2): 237-44, 2011 May.
Article in English | MEDLINE | ID: mdl-21330335

ABSTRACT

We identified and investigated the changes in expression of two gill Na(+), K(+)-ATPase α-subunit isoforms (α-1a and α-1b) in relationship with salinity acclimation in a cichlid fish, Mozambique tilapia. Transfer of freshwater (FW)-acclimated fish to seawater (SW) resulted in a marked reduction in α-1a expression within 24 h and a significant increase in α-1b expression with maximum levels attained 7 days after the transfer. In contrast, transfer of SW-acclimated fish to FW induced a marked increase in α-1a expression within 2 days, while α-1b expression decreased significantly after 14 days. Hypophysectomy resulted in a virtual shutdown of α-1a mRNA expression in both FW- and SW-acclimated fish, whereas no significant effect was observed in α-1b expression. Replacement therapy by ovine prolactin (oPrl) fully restored α-1a expression in FW-acclimated fish, while cortisol had a modest, but significant, stimulatory effect on α-1a expression. In hypophysectomized fish in SW, replacement therapy with oPrl alone or in combination with cortisol resulted in a marked increase in α-1a mRNA to levels far exceeding those observed in sham-operated fish. Expression of α-1b mRNA was unaffected by hormone treatment either in FW-acclimated fish or in SW-acclimated fish. The mRNA expression of fxyd-11, a regulatory Na(+), K(+)-ATPase subunit, was transiently enhanced during both FW and SW acclimation. In hypophysectomized fish in FW, oPrl and cortisol stimulated fxyd-11 expression in a synergistic manner. The clear Prl dependence of gill α-1a expression may partially explain the importance of this hormone to hyperosmoregulation in this species.


Subject(s)
Gills/enzymology , Prolactin/metabolism , Salinity , Sodium-Potassium-Exchanging ATPase/metabolism , Tilapia/metabolism , Acclimatization , Animals , Fish Proteins/metabolism , Hypophysectomy , Isoenzymes/metabolism , Male
4.
Gen Comp Endocrinol ; 167(1): 135-42, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20138183

ABSTRACT

The responses of Mozambique and Nile tilapia acclimated to fresh water (FW) and brackish water (BW; 17 per thousand) were compared following acute salinity challenges. In both species, plasma osmolality increased to above 450 mOsm by 2h after transfer from FW to seawater (SW); these increases in osmolality were accompanied by unexpected increases in plasma prolactin (PRL). Likewise, PRL receptor gene expression in the gill also increased in both species. In Nile tilapia, hyperosmotic transfers (FW to BW and SW) resulted in increased plasma growth hormone (GH) and in branchial GH receptor gene expression, responses that were absent in Mozambique tilapia. Branchial gene expression of osmotic stress transcription factor 1 (OSTF1) increased in both species following transfer from FW to SW, whereas transfer from BW to SW induced OSTF1 expression only in the Nile tilapia. Branchial expression of Na(+)/Cl(-) cotransporter was higher in FW in both species than in BW. Branchial gene expression of Na(+)/K(+)/2Cl(-) cotransporter (NKCC) increased after transfer from BW to SW in Mozambique tilapia, whereas expression was reduced in the Nile tilapia following the same transfer. The difference in the SW adaptability of these species may be related to a limited capacity of Nile tilapia to up-regulate NKCC gene expression, which is likely to be an essential component in the recruitment of SW-type chloride cells. The differential responses of GH and OSTF1 may also be associated with the disparate SW adaptability of these two tilapiine species.


Subject(s)
Cichlids/blood , Fish Proteins/genetics , Gene Expression Regulation , Growth Hormone/blood , Prolactin/blood , Salinity , Tilapia/blood , Animals , Intracellular Signaling Peptides and Proteins , Peptides/genetics , Polymerase Chain Reaction , Receptors, Prolactin/genetics , Receptors, Somatotropin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...