Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pathogens ; 13(9)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39338959

ABSTRACT

The fruit and vegetable industry in post-harvest processing plants is characterized by a substantial consumption of water resources. Wash waters may serve as an environment for the periodic or permanent habitation of microorganisms, particularly if biofilm forms on the inner walls of tanks and flushing channels. Despite the implementation of integrated food safety monitoring systems in numerous countries, foodborne pathogens remain a global public health and food safety concern, particularly for minimally processed food products such as vegetables and fruits. This necessitates the importance of studies that will explore wash water quality to safeguard minimally processed food against foodborne pathogen contamination. Therefore, the current study aimed to isolate and identify bacteria contaminating the wash waters of four fresh-cut processing plants (Poland) and to evaluate the phenotypic antibiotic resistance profiles in selected species. Bacteria were isolated using membrane filtration and identified through mass spectrometry, followed by antibiotic susceptibility testing according to EUCAST guidelines. The results revealed that the level of contamination with total aerobic bacteria in the water ranged from 1.30 × 106 cfu/mL to 2.54 × 108 cfu/mL. Among the isolates, opportunistic pathogens including Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae, Serratia marcescens, and Proteus vulgaris strains were identified. An especially noteworthy result was the identification of cefepime-resistant K. oxytoca isolates. These findings highlight the importance of monitoring the microbial microflora in minimally processed foods and the need for appropriate sanitary control procedures to minimize the risk of pathogen contamination, ensuring that products remain safe and of high quality throughout the supply chain.

2.
Environ Sci Pollut Res Int ; 31(12): 18993-19001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38353818

ABSTRACT

Intensive livestock production is a source of water, soil, and air contamination. The first aspect that negatively affects the quality of life of residents in the vicinity of piggeries is malodorous aerosols, which are not only responsible for discomfort but can be an etiological factor in the development of various diseases during prolonged exposure. One of the proven and efficient ways to counteract odor emissions is the usage of air biofiltration. The purpose of this study was to qualitatively analyze the bacterial community colonizing the biofilm of a biofilter operating at an industrial piggery in Switzerland. The study material consisted of biofilm and leachate water samples. The microbiological analysis consisted of DNA isolation, amplification of the bacterial 16S rRNA gene fragment (V3-V4), preparation of a library for high-throughput sequencing, high-throughput NGS sequencing, filtering of the obtained sequencing reads, and evaluation of the species composition in the studied samples. The investigation revealed the presence of the following bacterial genera: Pseudochelatococcus, Methyloversatilis, Flexilinea, Deviosia, Chryseobacterium, Kribbia, Leadbetterella, Corynebacterium, Flavobacterium, Xantobacter, Tessaracoccus, Staphylococcus, Thiobacillus, Enhydrobacter, Proteiniclasticum, and Giesbergeria. Analysis of the microbial composition of biofilters provides the opportunity to improve the biofiltration process.


Subject(s)
Quality of Life , Water , RNA, Ribosomal, 16S , Bacteria , Biofilms
3.
Environ Sci Pollut Res Int ; 29(51): 76532-76542, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36161570

ABSTRACT

An increase in the number of reports of legionellosis in the European Union and the European Economic Area have been recorded in recent years. The increase in cases is significant: from 6947 reports in 2015 to 11,298 in 2019. This is alarming as genus Legionella, which comprises a large group of bacteria inhabiting various aquatic systems, poses a serious threat to human health and life, since more than 20 species can cause legionellosis, with L. pneumophila being responsible for the majority of cases. The ability to colonize diverse ecosystems makes the eradication of these microorganisms difficult. A detailed understanding of the Legionella habitat may be helpful in the effective control of this pathogen. This paper provides an overview of Legionella environments in Europe: natural (lakes, groundwater, rivers, compost, soil) and anthropogenic (fountains, air humidifiers, water supply systems), and the role of Legionella spp. in nosocomial infections, which are potentially fatal for children, the elderly and immunocompromised patients.


Subject(s)
Legionella pneumophila , Legionella , Legionellosis , Child , Humans , Aged , Ecosystem , Water Microbiology , Legionellosis/etiology , Legionellosis/microbiology , Europe , Soil
4.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807328

ABSTRACT

Compared to conventional agriculture, organic farming is believed to provide a higher nutritional and health value in its products due to the elimination of harmful contaminants (pesticides, nitrates, heavy metals, etc.). Numerous studies have been conducted to show how the production system affects the quality of food in terms of the content of bioactive compounds. The aim of this study was to compare the content of some bioactive compounds (vitamin C, ß-carotene, Ca content) and lactic acid bacteria (LAB) number and their bacteriocinogenic activity in organic and conventional fermented food. Although the results do not provide an unambiguous conclusion regarding the superiority of one production system over the other, the LAB number in organic pickled carrot juice, sauerkraut, yogurt, and kefir was higher than in their conventional counterparts. Their bacteriocinogenic potential against selected pathogens was also higher in most organic products. Organic vegetables contained significantly more vitamin C, and the calcium content in the organic yogurt was higher compared to the conventional version of the product. Relatively similar concentrations of ß-carotene for both production systems were found in carrot juice, while in organic pickled beet juice, there was five-fold less ß-carotene than in conventional juice.


Subject(s)
Fermented Foods , Lactobacillales , Antioxidants , Ascorbic Acid , Carotenoids , Organic Agriculture , Vitamins
5.
Environ Sci Pollut Res Int ; 24(30): 23893-23902, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28871517

ABSTRACT

The paper evaluates the contents of total forms of selected heavy metals (Zn, Cu, Ni and Pb) as well as the activity of catalase (CAT), dehydrogenases (DEH), alkaline phosphatase (AlP) and acid phosphatase (AcP) in mineral surface horizons of forest soils exposed to the effect of road traffic pollutions. The sampling locations (n = 24) were determined in the area covered by the Szubin Forest along the exit road from Bydgoszcz to Poznan (provincial road no. 223). Soil was sampled 25 m away from the traffic lane, from two depths, 5-20 cm (humus horizons) and 20-50 cm (eluvial horizons). The contents of the heavy metals analysed were in the order of Pb > Zn > Cu > Ni. Despite intensive road traffic, with the Integrated Pollution Index (IPI) calculated, there was found a low pollution with nickel, average with zinc and copper and high with lead only. However, under the Regulation of the Minister of Environment, heavy metal values recorded allow for classifying the soils analysed as soils unpolluted with those metals. In the soil samples analysed, there were found significant positive dependencies between the content of clay fraction and zinc (r = 0.455; P < 0.05) and copper (r = 0.430; P < 0.05). With the enzyme activity results, values of the soil resistance index (RS) were calculated. The enzymes analysed were classified in the following decreasing order in terms of their resistance to traffic pollution: catalase > acid phosphatase > alkaline phosphatase > dehydrogenases (humus horizons) and catalase > dehydrogenases > alkaline phosphatase > acid phosphatase (eluvial horizons). Organic carbon showed a significant positive correlation with the activities of alkaline (r = 0.668; P < 0.05) and acid phosphatase (r = 0.668; P < 0.05) however not with catalase and dehydrogenases.


Subject(s)
Copper/chemistry , Environmental Pollution/analysis , Lead/chemistry , Nickel/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Copper/analysis , Environmental Monitoring , Forests , Lead/analysis , Metals, Heavy/analysis , Nickel/analysis , Soil , Soil Pollutants/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL