Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 29(6): 1364-1369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37322122

ABSTRACT

Reservoirs of HIV maintained in anatomic compartments during antiretroviral therapy prevent HIV eradication. However, mechanisms driving their persistence and interventions to control them remain elusive. Here we report the presence of an inducible HIV reservoir within antigen-specific CD4+T cells in the central nervous system of a 59-year-old male with progressive multifocal leukoencephalopathy immune reconstitution inflammatory syndrome (PML-IRIS). HIV production during PML-IRIS was suppressed by modulating inflammation with corticosteroids; selection of HIV drug resistance caused subsequent breakthrough viremia. Therefore, inflammation can influence the composition, distribution and induction of HIV reservoirs, warranting it as a key consideration for developing effective HIV remission strategies.


Subject(s)
HIV Infections , Immune Reconstitution Inflammatory Syndrome , Leukoencephalopathy, Progressive Multifocal , Male , Humans , Middle Aged , Immune Reconstitution Inflammatory Syndrome/drug therapy , Immune Reconstitution Inflammatory Syndrome/etiology , Leukoencephalopathy, Progressive Multifocal/drug therapy , Leukoencephalopathy, Progressive Multifocal/etiology , Brain , Central Nervous System
2.
J Virol ; 96(7): e0169921, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293766

ABSTRACT

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Alkynes/pharmacokinetics , Alkynes/pharmacology , Alkynes/therapeutic use , Animals , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV-1/genetics , Humans , Macaca mulatta , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Latency/drug effects , Virus Replication
3.
Front Immunol ; 12: 757400, 2021.
Article in English | MEDLINE | ID: mdl-34745130

ABSTRACT

Despite the significant progress that has been made to eliminate vertical HIV infection, more than 150,000 children were infected with HIV in 2019, emphasizing the continued need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-child-transmission (MTCT) remains the most important route of pediatric HIV acquisition and, in absence of prevention measures, transmission rates range from 15% to 45% via three distinct routes: in utero, intrapartum, and in the postnatal period through breastfeeding. The exact mechanisms and biological basis of these different routes of transmission are not yet fully understood. Some infants escape infection despite significant virus exposure, while others do not, suggesting possible maternal or fetal immune protective factors including the presence of HIV-specific antibodies. Here we summarize the unique aspects of HIV MTCT including the immunopathogenesis of the different routes of transmission, and how transmission in the antenatal or postnatal periods may affect early life immune responses and HIV persistence. A more refined understanding of the complex interaction between viral, maternal, and fetal/infant factors may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.


Subject(s)
HIV Infections/transmission , HIV-1 , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/immunology , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Breast Feeding/adverse effects , CD4 Antigens/genetics , Coinfection , Delivery, Obstetric , Female , Genotype , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Host-Pathogen Interactions/immunology , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Male , Milk, Human/virology , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Receptors, Virus/genetics , Risk Factors , Sexually Transmitted Diseases/complications , Tuberculosis/complications , Viral Load
4.
JCI Insight ; 6(23)2021 12 08.
Article in English | MEDLINE | ID: mdl-34699383

ABSTRACT

Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Simian Acquired Immunodeficiency Syndrome/virology , Viremia/etiology , Animals , Female , Macaca , Male , Viremia/pathology
5.
Viruses ; 13(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34452425

ABSTRACT

Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. "Shock and kill" is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the "shock and kill" strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Models, Animal , Virus Latency/drug effects , Animals , Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Depletion , Primates , Simian Immunodeficiency Virus/drug effects , Virus Activation/drug effects
6.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33087463

ABSTRACT

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , HIV Infections/veterinary , Macaca mulatta , Monkey Diseases/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Administration, Oral , Animals , Animals, Newborn , DNA, Viral/analysis , Disease Reservoirs , Female , HIV Infections/immunology , HIV Infections/transmission , HIV-1 , Male , Monkey Diseases/immunology , Monkey Diseases/transmission , RNA, Viral/analysis , Reassortant Viruses/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load
7.
PLoS Pathog ; 16(10): e1008954, 2020 10.
Article in English | MEDLINE | ID: mdl-33104758

ABSTRACT

Globally, 1.8 million children are living with HIV-1. While antiretroviral therapy (ART) has improved disease outcomes, it does not eliminate the latent HIV-1 reservoir. Interventions to delay or prevent viral rebound in the absence of ART would be highly beneficial for HIV-1-infected children who now must remain on daily ART throughout their lifespan. Here, we evaluated therapeutic Ad48-SIV prime, MVA-SIV boost immunization in combination with the TLR-7 agonist GS-986 in rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen beginning 4 weeks after infection. We hypothesized immunization would enhance SIV-specific T cell responses during ART-mediated suppression of viremia. Compared to controls, vaccinated infants had greater magnitude SIV-specific T cell responses (mean of 3475 vs 69 IFN-γ spot forming cells (SFC) per 106 PBMCs, respectively, P = 0.01) with enhanced breadth of epitope recognition and increased CD8+ and CD4+ T cell polyfunctionality (P = 0.004 and P = 0.005, respectively). Additionally, SIV-specific gp120 antibodies against challenge and vaccine virus strains were significantly elevated following MVA boost (P = 0.02 and P < 0.001, respectively). GS-986 led to expected immune stimulation demonstrated by activation of monocytes and T cells 24 hours post-dose. Despite the vaccine-induced immune responses, levels of SIV DNA in peripheral and lymph node CD4+ T cells were not significantly different from controls and a similar time to viral rebound and viral load set point were observed following ART interruption in both groups. We demonstrate infant RMs mount a robust immunological response to this immunization, but vaccination alone was not sufficient to impact viral reservoir size or modulate rebound dynamics following ART release. Our findings hold promise for therapeutic vaccination as a part of a combination cure approach in children and highlight the importance of a pediatric model to evaluate HIV-1 cure interventions in this unique setting of immune development.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/immunology , Toll-Like Receptor 7/agonists , Vaccination/methods , Viremia/drug therapy , Adenoviridae/genetics , Animals , Animals, Newborn , CD4-Positive T-Lymphocytes/virology , Female , Genetic Vectors , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Viral Load , Viremia/immunology , Viremia/virology , Virus Replication
8.
Front Immunol ; 11: 1785, 2020.
Article in English | MEDLINE | ID: mdl-32922392

ABSTRACT

While the majority of influenza-infected individuals show no or mild symptomatology, pregnant women are at higher risk of complications and infection-associated mortality. Although enhanced lung pathology and dysregulated hormones are thought to underlie adverse pregnancy outcomes following influenza infection, how pregnancy confounds long-term maternal anti-influenza immunity remains to be elucidated. Previously, we linked seasonal influenza infection to clinical observations of adverse pregnancy outcomes, enhanced lung and placental histopathology, and reduced control of viral replication in lungs of infected pregnant mothers. Here, we expand on this work and demonstrate that lower infectious doses of the pandemic A/California/07/2009 influenza virus generated adverse gestational outcomes similar to higher doses of seasonal viruses. Mice infected during pregnancy demonstrated lower hemagglutination inhibition and neutralizing antibody titers than non-pregnant animals until 63 days post infection. These differences in humoral immunity suggest that pregnancy impacts antibody maturation mechanisms without alterations to B cell frequency or antibody secretion. This is further supported by transcriptional analysis of plasmablasts, which demonstrate downregulated B cell metabolism and post-translational modification systems only among pregnant animals. In sum, these findings corroborate a link between adverse pregnancy outcomes and severe pathology observed during pandemic influenza infection. Furthermore, our data propose that pregnancy directly confounds humoral responses following influenza infection which resolves post-partem. Additional studies are required to specify the involvement of plasmablast metabolism with early humoral immunity abnormalities to best guide vaccination strategies and improve our understanding of the immunological consequences of pregnancy.


Subject(s)
Antibodies, Viral/immunology , Immunity, Humoral/immunology , Orthomyxoviridae Infections/immunology , Plasma Cells/immunology , Pregnancy Complications, Infectious/immunology , Animals , Antibodies, Neutralizing/immunology , Down-Regulation , Female , Gene Expression Regulation/immunology , Influenza A virus , Mice , Mice, Inbred BALB C , Plasma Cells/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...