Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114122, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38652659

ABSTRACT

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.

2.
EMBO J ; 41(14): e109217, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670106

ABSTRACT

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Subject(s)
Herpesvirus 3, Human , Interferon Type I , Nucleotidyltransferases , Viral Proteins , DNA/metabolism , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , Membrane Proteins/immunology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/immunology , Viral Proteins/immunology
4.
Mol Cell ; 81(20): 4109-4110, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34686311

ABSTRACT

Unusual nucleic acids activate innate immunity and may be present in transformed cells. Meng et al. (2021) find that cancer-associated mutations in NF2 turn this tumor suppressor into a potent antagonist of DNA- and RNA-induced innate immune signaling.


Subject(s)
Interferons , Nucleic Acids , Immunity, Innate , RNA , Signal Transduction
5.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525337

ABSTRACT

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Adenosine Deaminase/genetics , Interferon Type I/immunology , RNA, Double-Stranded/genetics , Adenosine/genetics , Adenosine/metabolism , Animals , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Inosine/genetics , Inosine/metabolism , Interferon Type I/genetics , Mice , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/immunology , RNA Editing/genetics , RNA, Double-Stranded/metabolism
6.
Sci Rep ; 11(1): 13638, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211037

ABSTRACT

Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/immunology , Interferons/immunology , SARS-CoV-2/immunology , Cell Line , Humans , Immunity, Innate , RNA/immunology , Interferon Lambda
7.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Article in English | MEDLINE | ID: mdl-34253898

ABSTRACT

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Subject(s)
Cell Proliferation/drug effects , Cellular Senescence/drug effects , DNA Transposable Elements , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Interferon-Induced Helicase, IFIH1/metabolism , Myeloablative Agonists/pharmacology , Animals , Chromatin Assembly and Disassembly/drug effects , Endogenous Retroviruses/genetics , Enzyme Activation , HEK293 Cells , Hematopoietic Stem Cells/enzymology , Humans , Interferon-Induced Helicase, IFIH1/genetics , Ligands , Long Interspersed Nucleotide Elements , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
8.
EMBO Rep ; 22(8): e52447, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34142428

ABSTRACT

Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines, Virus-Like Particle , Animals , Humans , Mice , Nucleotides, Cyclic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle/genetics
9.
Cells ; 9(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560274

ABSTRACT

The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.


Subject(s)
Cell Death/physiology , DEAD Box Protein 58/metabolism , Receptors, Immunologic/metabolism , Zika Virus Infection/virology , Animals , Chlorocebus aethiops/virology , Humans , Immunity, Innate/immunology , Signal Transduction/immunology , Vero Cells/virology , Viral Nonstructural Proteins/metabolism , Zika Virus/immunology , Zika Virus/metabolism , Zika Virus Infection/immunology
10.
Cell Rep ; 31(6): 107640, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402273

ABSTRACT

The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.


Subject(s)
Deoxyguanine Nucleotides/metabolism , Purine Nucleosides/pharmacology , Pyrimidinones/pharmacology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Drug Resistance, Neoplasm , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Mice , Mice, Inbred C57BL
11.
Eur J Immunol ; 50(1): 56-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31608988

ABSTRACT

Toll-like receptor 7 (TLR7) is an innate immune sensor for single-strand RNA (ssRNA). Recent structural analysis revealed that TLR7 has an additional binding site for nucleosides such as guanosine, and is activated when both guanosine and ssRNA bind. The nucleoside binding site also accommodates imidazoquinoline derivatives such as R848, which activate TLR7 in the absence of ssRNA. Here, we report that deoxyguanosine (dG) triggered cytokine production in murine bone marrow derived macrophages and plasmacytoid dendritic cells, as well as in human peripheral blood mononuclear cells, including type I interferons and pro-inflammatory factors such as TNF and IL-6. This signalling activity of dG was dependent on TLR7 and its adaptor MyD88 and did not require amplification via the type I interferon receptor. dG-triggered cytokine production required endosomal maturation but did not depend on the concurrent provision of RNA. We conclude that dG induces an inflammatory response through TLR7 and propose that dG is an RNA-independent TLR7 agonist.


Subject(s)
Deoxyguanosine/immunology , Inflammation/immunology , Toll-Like Receptor 7/agonists , Animals , Deoxyguanosine/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL
13.
Methods Mol Biol ; 1656: 143-152, 2017.
Article in English | MEDLINE | ID: mdl-28808967

ABSTRACT

Sensing of cytoplasmic DNA by cGAS is essential for the initiation of immune responses against several viruses. cGAS also plays important roles in some autoinflammatory and autoimmune diseases and may be involved in immune responses targeting cancer cells. Once activated, cGAS catalyzes the formation of the di-nucleotide 2'-3'-cyclic GMP-AMP (cGAMP), which propagates a signaling cascade leading to the production of type I interferons (IFNs). Interestingly, cGAMP is incorporated into enveloped viruses and is transferred to newly infected cells by virions. In this article, we describe a method to purify cGAMP from viral particles and a bioassay to measure its activity. This assay takes advantage of a reporter cell line that expresses the genes encoding green fluorescent protein (GFP) and firefly luciferase under the control of the IFNß promoter, allowing the testing of several samples in a single experiment taking not more than 3 days.


Subject(s)
Interferon-beta/immunology , Nucleotides, Cyclic , Virion , Viruses , Humans , Immunity, Innate , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/isolation & purification , THP-1 Cells , Virion/chemistry , Virion/immunology , Virus Diseases/immunology , Viruses/chemistry , Viruses/immunology
14.
Nat Cell Biol ; 19(9): 1061-1070, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759028

ABSTRACT

Cellular senescence is triggered by various distinct stresses and characterized by a permanent cell cycle arrest. Senescent cells secrete a variety of inflammatory factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The mechanism(s) underlying the regulation of the SASP remains incompletely understood. Here we define a role for innate DNA sensing in the regulation of senescence and the SASP. We find that cyclic GMP-AMP synthase (cGAS) recognizes cytosolic chromatin fragments in senescent cells. The activation of cGAS, in turn, triggers the production of SASP factors via stimulator of interferon genes (STING), thereby promoting paracrine senescence. We demonstrate that diverse stimuli of cellular senescence engage the cGAS-STING pathway in vitro and we show cGAS-dependent regulation of senescence following irradiation and oncogene activation in vivo. Our findings provide insights into the mechanisms underlying cellular senescence by establishing the cGAS-STING pathway as a crucial regulator of senescence and the SASP.


Subject(s)
Cellular Senescence , Chromatin/enzymology , Cytosol/enzymology , Immunity, Innate , Nucleotidyltransferases/metabolism , Animals , Cell Proliferation , Cells, Cultured , Cellular Senescence/radiation effects , Chromatin/immunology , Chromatin/radiation effects , Cytosol/immunology , Cytosol/radiation effects , Enzyme Activation , Female , Genotype , Immunity, Innate/radiation effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Oxidative Stress , Paracrine Communication , Phenotype , RNA Interference , Signal Transduction , Time Factors , Transfection
15.
EMBO J ; 36(17): 2529-2543, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28716805

ABSTRACT

Nucleic acids are potent triggers for innate immunity. Double-stranded DNA and RNA adopt different helical conformations, including the unusual Z-conformation. Z-DNA/RNA is recognised by Z-binding domains (ZBDs), which are present in proteins implicated in antiviral immunity. These include ZBP1 (also known as DAI or DLM-1), which induces necroptosis, an inflammatory form of cell death. Using reconstitution and knock-in models, we report that mutation of key amino acids involved in Z-DNA/RNA binding in ZBP1's ZBDs prevented necroptosis upon infection with mouse cytomegalovirus. Induction of cell death was cell autonomous and required RNA synthesis but not viral DNA replication. Accordingly, ZBP1 directly bound to RNA via its ZBDs. Intact ZBP1-ZBDs were also required for necroptosis triggered by ectopic expression of ZBP1 and caspase blockade, and ZBP1 cross-linked to endogenous RNA These observations show that Z-RNA may constitute a molecular pattern that induces inflammatory cell death upon sensing by ZBP1.


Subject(s)
Apoptosis/physiology , Glycoproteins/metabolism , RNA/metabolism , Animals , Cytomegalovirus/genetics , Cytomegalovirus Infections/metabolism , Glycoproteins/genetics , Mice , Mice, Transgenic , NIH 3T3 Cells , Nucleic Acid Conformation , RNA/chemistry , RNA-Binding Proteins
16.
Cell Rep ; 16(6): 1492-1501, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27477283

ABSTRACT

SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection.


Subject(s)
Adaptive Immunity/immunology , HIV-1/immunology , Immunity, Innate/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Dendritic Cells/immunology , HIV Infections/metabolism , HIV-1/genetics , Interferon-beta/metabolism , Mice , Mice, Inbred C57BL , SAM Domain and HD Domain-Containing Protein 1/deficiency , Virus Replication/immunology
17.
Hum Vaccin Immunother ; 11(4): 1030-5, 2015.
Article in English | MEDLINE | ID: mdl-25751015

ABSTRACT

Viral vector vaccines designed to elicit CD8(+) T cells in non-human primates exert potent control of immunodeficiency virus infections; however, similar approaches have been unsuccessful in humans. Adenoviral vectors elicit potent T cell responses but also induce production of immunosuppressive interleukin-10 (IL-10), which can limit the expansion of T cell responses. We investigated whether inhibiting IL-10 signaling prior to immunization with a candidate adenovirus vectored-HIV-1 vaccine, ChAdV63.HIVconsv, could modulate innate and adaptive immune responses in BALB/c mice. Transient IL-10 receptor blockade led to a modest but significant increase in the total magnitude CD8(+) T cell response to HIVconsv, but did not affect T cell responses to immunodominant epitopes. Anti-IL-10R-treated animals also exhibited greater expression of CD86 on CD11c(+) dendritic cells. Our data support further investigation and optimization of IL-10 blocking strategies to improve the immunogenicity of vaccines based on replication-defective adenoviruses.


Subject(s)
Adenoviruses, Simian/genetics , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/genetics , HIV-1/immunology , Receptors, Interleukin-10/antagonists & inhibitors , AIDS Vaccines , Animals , B7-2 Antigen/metabolism , CD11c Antigen/metabolism , Enzyme-Linked Immunospot Assay , Female , HIV Antibodies , HIV Infections , HIV-1/metabolism , Mice , Mice, Inbred BALB C
18.
Clin Vaccine Immunol ; 21(11): 1565-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25230940

ABSTRACT

A likely requirement for a protective vaccine against human immunodeficiency virus type 1 (HIV-1)/AIDS is, in addition to eliciting antibody responses, induction of effective T cells. To tackle HIV-1 diversity by T-cell vaccines, we designed an immunogen, HIVconsv, derived from the most functionally conserved regions of the HIV-1 proteome and demonstrated its high immunogenicity in humans and rhesus macaques when delivered by regimens combining plasmid DNA, nonreplicating simian (chimpanzee) adenovirus ChAdV-63, and nonreplicating modified vaccinia virus Ankara (MVA) as vectors. Here, we aimed to increase the decision power for iterative improvements of this vaccine strategy in the BALB/c mouse model. First, we found that prolonging the period after the ChAdV63.HIVconsv prime up to 6 weeks increased the frequencies of HIV-1-specific, gamma interferon (IFN-γ)-producing T cells induced by the MVA.HIVconsv boost. Induction of strong responses allowed us to map comprehensively the H-2(d)-restricted T-cell responses to these regions and identified 8 HIVconsv peptides, of which three did not contain a previously described epitope and were therefore considered novel. Induced effector T cells were oligofunctional and lysed sensitized targets in vitro. Our study therefore provides additional tools for studying and optimizing vaccine regimens in this commonly used small animal model, which will in turn guide vaccine improvements in more expensive nonhuman primate and human clinical trials.


Subject(s)
AIDS Vaccines/immunology , Conserved Sequence/immunology , HIV-1/immunology , Interferon-gamma/metabolism , T-Lymphocytes/immunology , Viral Proteins/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/isolation & purification , Adenoviridae/genetics , Animals , Drug Carriers , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Genetic Vectors , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccinia virus/genetics
19.
Mol Ther ; 22(2): 464-475, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166483

ABSTRACT

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , AIDS Vaccines/genetics , Adolescent , Adult , Amino Acid Sequence , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HIV Infections/prevention & control , HIV-1/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Virus Replication/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology
20.
EMBO J ; 32(18): 2454-62, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23872947

ABSTRACT

SAMHD1 is a host restriction factor for human immunodeficiency virus 1 (HIV-1) in cultured human cells. SAMHD1 mutations cause autoimmune Aicardi-Goutières syndrome and are found in cancers including chronic lymphocytic leukaemia. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of deoxynucleoside triphosphates, thereby preventing reverse transcription of retroviral genomes. However, in vivo evidence for SAMHD1's antiviral activity has been lacking. We generated Samhd1 null mice that do not develop autoimmune disease despite displaying a type I interferon signature in spleen, macrophages and fibroblasts. Samhd1(-/-) cells have elevated deoxynucleoside triphosphate (dNTP) levels but, surprisingly, SAMHD1 deficiency did not lead to increased infection with VSV-G-pseudotyped HIV-1 vectors. The lack of restriction is likely attributable to the fact that dNTP concentrations in SAMHD1-sufficient mouse cells are higher than the KM of HIV-1 reverse transcriptase (RT). Consistent with this notion, an HIV-1 vector mutant bearing an RT with lower affinity for dNTPs was sensitive to SAMHD1-dependent restriction in cultured cells and in mice. This shows that SAMHD1 can restrict lentiviruses in vivo and that nucleotide starvation is an evolutionarily conserved antiviral mechanism.


Subject(s)
Autoimmune Diseases of the Nervous System/metabolism , HIV Infections/physiopathology , HIV-1/physiology , Monomeric GTP-Binding Proteins/metabolism , Nervous System Malformations/metabolism , Reverse Transcription/physiology , Animals , Autoimmune Diseases of the Nervous System/genetics , Cell Line , Genetic Vectors/genetics , HIV Infections/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Interferon Type I/metabolism , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/genetics , Nervous System Malformations/genetics , Nucleotides/metabolism , Reverse Transcription/genetics , SAM Domain and HD Domain-Containing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...