Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390215

ABSTRACT

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

2.
Clim Dyn ; 59(5-6): 1401-1414, 2022.
Article in English | MEDLINE | ID: mdl-35971539

ABSTRACT

Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δ18OTR) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that δ18OTR of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore δ18OTR increases by approximately 2‰ over the last four decades (~ 1970-2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The δ18OTR record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of δ18OTR with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in δ18OTR and decrease in dry season rainfall. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-021-06046-7.

3.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Article in English | MEDLINE | ID: mdl-33795854

ABSTRACT

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Subject(s)
Forests , Trees , Biodiversity , Brazil , Humans
5.
New Phytol ; 229(5): 2413-2445, 2021 03.
Article in English | MEDLINE | ID: mdl-32789857

ABSTRACT

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Subject(s)
Carbon Sequestration , Ecosystem , Atmosphere , Carbon Cycle , Carbon Dioxide , Climate Change
6.
Proc Natl Acad Sci U S A ; 117(52): 33358-33364, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318167

ABSTRACT

Forests are the largest terrestrial biomass pool, with over half of this biomass stored in the highly productive tropical lowland forests. The future evolution of forest biomass depends critically on the response of tree longevity and growth rates to future climate. We present an analysis of the variation in tree longevity and growth rate using tree-ring data of 3,343 populations and 438 tree species and assess how climate controls growth and tree longevity across world biomes. Tropical trees grow, on average, two times faster compared to trees from temperate and boreal biomes and live significantly shorter, on average (186 ± 138 y compared to 322 ± 201 y outside the tropics). At the global scale, growth rates and longevity covary strongly with temperature. Within the warm tropical lowlands, where broadleaf species dominate the vegetation, we find consistent decreases in tree longevity with increasing aridity, as well as a pronounced reduction in longevity above mean annual temperatures of 25.4 °C. These independent effects of temperature and water availability on tree longevity in the tropics are consistent with theoretical predictions of increases in evaporative demands at the leaf level under a warmer and drier climate and could explain observed increases in tree mortality in tropical forests, including the Amazon, and shifts in forest composition in western Africa. Our results suggest that conditions supporting only lower tree longevity in the tropical lowlands are likely to expand under future drier and especially warmer climates.


Subject(s)
Longevity , Temperature , Trees/anatomy & histology , Trees/physiology , Tropical Climate , Ecosystem , Geography , Models, Theoretical , Trees/growth & development , Water
7.
Nat Commun ; 11(1): 5515, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168823

ABSTRACT

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Subject(s)
Ecology , Forests , Trees/growth & development , Biomass , Brazil , Carbon Dioxide , Carbon Sequestration , Ecosystem , Environmental Monitoring , Models, Biological , Proportional Hazards Models , Risk Factors , Tropical Climate
8.
Sci Total Environ ; 743: 140798, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758845

ABSTRACT

The impacts of climate change on precipitation and the growing demand for water have increased the water risks worldwide. Water scarcity is one of the main challenges of the 21st century, and the assessment of water risks is only possible from spatially distributed records of historical climate and levels of water reservoirs. One potential method to assess water supply is the reconstruction of oxygen isotopes in rainfall. We here investigated the use of tree-ring stable isotopes in urban trees to assess spatial/temporal variation in precipitation and level of water reservoirs. We analyzed the intra-annual variation of δ13C and δ18O in the tree rings of Tipuana tipu trees from northern and southern Metropolitan Area of São Paulo (MASP), Brazil. While variation in δ13C indicates low leaf-level enrichments from evapotranspiration, δ18O variation clearly reflects precipitation extremes. Tree-ring δ18O was highest during the 2014 drought, associated with the lowest historical reservoir levels in the city. The δ18O values from the middle of the tree rings have a strong association with the mid-summer precipitation (r = -0.71), similar to the association between the volume of precipitation and its δ18O signature (r = -0.76). These consistent results allowed us to test the association between tree-ring δ18O and water-level of the main reservoirs that supply the MASP. We observed a strong association between intra-annual tree-ring δ18O and the water-level of reservoirs in the northern and southern MASP (r = -0.94, r = -0.90, respectively). These results point to the potential use of high-resolution tree-ring stable isotopes to put precipitation extremes, and water supply, in a historical perspective assisting public policies related to water risks and climate change. The ability to record precipitation extremes, and previously reported capacity to record air pollution, place Tipuana tipu in a prominent position as a reliable environmental monitor for urban locations.


Subject(s)
Climate Change , Water/analysis , Brazil , Carbon Isotopes/analysis , Cities , Oxygen Isotopes/analysis
9.
Science ; 368(6493): 869-874, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32439789

ABSTRACT

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.


Subject(s)
Carbon Cycle , Climate Change , Forests , Hot Temperature , Trees/metabolism , Tropical Climate , Acclimatization , Biomass , Carbon/metabolism , Earth, Planet , Wood
10.
Ecology ; 101(7): e03052, 2020 07.
Article in English | MEDLINE | ID: mdl-32239762

ABSTRACT

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Subject(s)
Forests , Wood , Africa , Brazil , Ecosystem , Tropical Climate
11.
Nature ; 579(7797): 80-87, 2020 03.
Article in English | MEDLINE | ID: mdl-32132693

ABSTRACT

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.


Subject(s)
Carbon Dioxide/metabolism , Carbon Sequestration , Forests , Trees/metabolism , Tropical Climate , Africa , Atmosphere/chemistry , Biomass , Brazil , Droughts , History, 20th Century , History, 21st Century , Models, Theoretical , Temperature
12.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Article in English | MEDLINE | ID: mdl-31712699

ABSTRACT

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Subject(s)
Ecosystem , Wood , Forests , Phylogeny , Tropical Climate
13.
Glob Chang Biol ; 25(11): 3609-3624, 2019 11.
Article in English | MEDLINE | ID: mdl-31310673

ABSTRACT

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.


Subject(s)
Trees , Tropical Climate , Africa , Asia , Biomass , Carbon , Forests , South America
14.
Ecology ; 100(4): e02636, 2019 04.
Article in English | MEDLINE | ID: mdl-30693479

ABSTRACT

The forests of western Amazonia are among the most diverse tree communities on Earth, yet this exceptional diversity is distributed highly unevenly within and among communities. In particular, a small number of dominant species account for the majority of individuals, whereas the large majority of species are locally and regionally extremely scarce. By definition, dominant species contribute little to local species richness (alpha diversity), yet the importance of dominant species in structuring patterns of spatial floristic turnover (beta diversity) has not been investigated. Here, using a network of 207 forest inventory plots, we explore the role of dominant species in determining regional patterns of beta diversity (community-level floristic turnover and distance-decay relationships) across a range of habitat types in northern lowland Peru. Of the 2,031 recorded species in our data set, only 99 of them accounted for 50% of individuals. Using these 99 species, it was possible to reconstruct the overall features of regional beta diversity patterns, including the location and dispersion of habitat types in multivariate space, and distance-decay relationships. In fact, our analysis demonstrated that regional patterns of beta diversity were better maintained by the 99 dominant species than by the 1,932 others, whether quantified using species-abundance data or species presence-absence data. Our results reveal that dominant species are normally common only in a single forest type. Therefore, dominant species play a key role in structuring western Amazonian tree communities, which in turn has important implications, both practically for designing effective protected areas, and more generally for understanding the determinants of beta diversity patterns.


Subject(s)
Biodiversity , Trees , Ecosystem , Forests , Peru , Tropical Climate
15.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Article in English | MEDLINE | ID: mdl-30406962

ABSTRACT

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Subject(s)
Biodiversity , Climate Change , Forests , Brazil , Carbon Dioxide , Ecosystem , Seasons , Trees/classification , Trees/physiology , Tropical Climate , Water
16.
Sci Adv ; 4(9): eaat8785, 2018 09.
Article in English | MEDLINE | ID: mdl-30255149

ABSTRACT

The Amazon basin is the largest watershed on Earth. Although the variability of the Amazon hydrological cycle has been increasing since the late 1990s, its underlying causes have remained elusive. We use water levels in the Amazon River to quantify changes in extreme events and then analyze their cause. Despite continuing research emphasis on droughts, the largest change over recent decades is a marked increase in very severe floods. Increased flooding is linked to a strengthening of the Walker circulation, resulting from strong tropical Atlantic warming and tropical Pacific cooling. Atlantic warming due to combined anthropogenic and natural factors has contributed to enhance the change in atmospheric circulation. Whether this anomalous increase in flooding will last depends on the evolution of the tropical inter-ocean temperature difference.

17.
Carbon Balance Manag ; 12(1): 1, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28413845

ABSTRACT

BACKGROUND: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. RESULTS: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. CONCLUSIONS: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.

18.
Glob Chang Biol ; 23(2): 474-484, 2017 02.
Article in English | MEDLINE | ID: mdl-27387088

ABSTRACT

Understanding responses of forests to increasing CO2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for.


Subject(s)
Forests , Temperature , Carbon Dioxide , Demography , Trees , Water
19.
Trees (Berl West) ; 31(6): 1999-2009, 2017.
Article in English | MEDLINE | ID: mdl-32009742

ABSTRACT

KEY MESSAGE: Radiocarbon dating shows that Cedrela trees from Bolivia, Ecuador and Venezuela form one ring per year but Cedrela trees from Suriname form two rings per year. ABSTRACT: Tropical tree rings have the potential to yield valuable ecological and climate information, on the condition that rings are annual and accurately dated. It is important to understand the factors controlling ring formation, since regional variation in these factors could cause trees in different regions to form tree rings at different times. Here, we use 'bomb-peak' radiocarbon (14C) dating to test the periodicity of ring formation in Cedrela trees from four sites across tropical South America. We show that trees from Bolivia, Ecuador and Venezuela have reliably annual tree rings, while trees from Suriname regularly form two rings per year. This proves that while tree rings of a particular species may be demonstrably annual at one site, this does not imply that rings are formed annually in other locations. We explore possible drivers of variation in ring periodicity and find that Cedrela growth rhythms are most likely caused by precipitation seasonality, with a possible degree of genetic control. Therefore, tree-ring studies undertaken at new locations in the tropics require independent validation of the annual nature of tree rings, irrespective of how the studied species behaves in other locations.

20.
Glob Chang Biol ; 23(3): e5-e6, 2017 03.
Article in English | MEDLINE | ID: mdl-27997068

ABSTRACT

We recently demonstrated that growth trends from tree rings from Van Der Sleen et al. (Nature Geoscience, 8, 2015, 24) and Groenendijk et al. (Global Change Biology, 21, 2015, 3762) are affected by demographic biases. In particular, clustered age distributions led to a negative bias in their growth trends. In a response, they challenge our analysis and present an alternative correction approach. We here show that their arguments are incorrect and based on misunderstanding of our analysis and that their alternative approach does not work.


Subject(s)
Trees/growth & development , Humans , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...