Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Structure ; 31(2): 152-165.e7, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36586404

ABSTRACT

Type II secretion systems (T2SSs) allow diderm bacteria to secrete hydrolytic enzymes, adhesins, or toxins important for growth and virulence. To promote secretion of folded proteins, T2SSs assemble periplasmic filaments called pseudopili or endopili at an inner membrane subcomplex, the assembly platform (AP). Here, we combined biophysical approaches, nuclear magnetic resonance (NMR) and X-ray crystallography, to study the Klebsiella AP components PulL and PulM. We determined the structure and associations of their periplasmic domains and describe the structure of the heterodimer formed by their ferredoxin-like domains. We show how structural complementarity and plasticity favor their association during the secretion process. Cysteine scanning and crosslinking data provided additional constraints to build a structural model of the PulL-PulM assembly in the cellular context. Our structural and functional insights, together with the relative cellular abundance of its components, support the role of AP as a dynamic hub that orchestrates pilus polymerization.


Subject(s)
Type II Secretion Systems , Type II Secretion Systems/metabolism , Bacteria/metabolism , Fimbriae, Bacterial/metabolism , Bacterial Proteins/chemistry
2.
BMC Biol ; 20(1): 176, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945584

ABSTRACT

BACKGROUND: Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS: We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION: Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.


Subject(s)
Calcium , Calmodulin , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Imidazoles , Protein Binding , Scattering, Small Angle , X-Ray Diffraction
3.
J Biol Chem ; 298(1): 101290, 2022 01.
Article in English | MEDLINE | ID: mdl-34678315

ABSTRACT

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Nucleocapsid Proteins/analysis , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Animals , Cricetinae , Electrophoresis, Polyacrylamide Gel , Humans , Limit of Detection , Nucleocapsid Proteins/immunology
4.
Adv Sci (Weinh) ; 8(9): 2003630, 2021 05.
Article in English | MEDLINE | ID: mdl-33977052

ABSTRACT

The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Calmodulin/metabolism , Eukaryotic Cells/metabolism , Protein Domains/physiology , Binding Sites/physiology , Protein Binding/physiology , Protein Transport/physiology
5.
FASEB J ; 35(5): e21540, 2021 05.
Article in English | MEDLINE | ID: mdl-33817838

ABSTRACT

Compared to conventional antisera strategies, monoclonal antibodies (mAbs) represent an alternative and safer way to treat botulism, a fatal flaccid paralysis due to botulinum neurotoxins (BoNTs). In addition, mAbs offer the advantage to be produced in a reproducible manner. We previously identified a unique and potent mouse mAb (TA12) targeting BoNT/A1 with high affinity and neutralizing activity. In this study, we characterized the molecular basis of TA12 neutralization by combining Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) with site-directed mutagenesis and functional studies. We found that TA12 recognizes a conformational epitope located at the interface between the HCN and HCC subdomains of the BoNT/A1 receptor-binding domain (HC ). The TA12-binding interface shares common structural features with the ciA-C2 VHH epitope and lies on the face opposite recognized by ciA-C2- and the CR1/CR2-neutralizing mAbs. The single substitution of N1006 was sufficient to affect TA12 binding to HC confirming the position of the epitope. We further uncovered that the TA12 epitope overlaps with the BoNT/A1-binding site for both the neuronal cell surface receptor synaptic vesicle glycoprotein 2 isoform C (SV2C) and the GT1b ganglioside. Hence, TA12 potently blocks the entry of BoNT/A1 into neurons by interfering simultaneously with the binding of SV2C and to a lower extent GT1b. Our study reveals the unique neutralization mechanism of TA12 and emphasizes on the potential of using single mAbs for the treatment of botulism type A.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Botulinum Toxins, Type A/immunology , Epitopes/immunology , Gangliosides/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuromuscular Agents/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/metabolism , Botulinum Toxins, Type A/metabolism , Mice , Neuromuscular Agents/metabolism , Protein Conformation
6.
Methods Mol Biol ; 2127: 339-358, 2020.
Article in English | MEDLINE | ID: mdl-32112332

ABSTRACT

Integral membrane proteins are involved in numerous biological functions and represent important drug targets. Despite their abundance in the human proteome, the number of integral membrane protein structures is largely underrepresented in the Protein Data Bank. The challenges associated with the biophysical characterization of such biological systems are well known. Most structural approaches, including X-ray crystallography, SAXS, or mass spectrometry (MS), require the complete solubilization of membrane proteins in aqueous solutions. Detergents are frequently used for this task, but may interfere with the analysis, as is the case with MS. The use of "MS-friendly" detergents, such as non-ionic alkyl glycoside detergents, has greatly facilitated the analysis of detergent-solubilized membrane proteins. Here, we describe a protocol, which we have successfully implemented in our laboratory to study the structure and dynamics of detergent-solubilized integral membrane proteins by Hydrogen/Deuterium eXchange and Mass Spectrometry (HDX-MS). The procedure does not require detergent removal prior to MS analysis, instead taking advantage of the ultra-high pressure chromatographic system to separate deuterated peptides from "MS-friendly" detergents.


Subject(s)
Deuterium Exchange Measurement/methods , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Membrane Proteins/chemistry , Crystallography, X-Ray , Detergents/chemistry , Deuterium/chemistry , Deuterium Exchange Measurement/instrumentation , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry/instrumentation , Mass Spectrometry , Membrane Proteins/drug effects , Models, Molecular , Protein Conformation , Scattering, Small Angle , Solubility , X-Ray Diffraction
7.
Nat Methods ; 16(7): 595-602, 2019 07.
Article in English | MEDLINE | ID: mdl-31249422

ABSTRACT

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Subject(s)
Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Data Analysis , Hydrogen-Ion Concentration
8.
FASEB J ; 33(9): 10065-10076, 2019 09.
Article in English | MEDLINE | ID: mdl-31226003

ABSTRACT

The adenylate cyclase (CyaA) toxin is a major virulence factor of Bordetella pertussis, the causative agent of whooping cough. CyaA is synthetized as a pro-toxin, pro-CyaA, and converted into its cytotoxic form upon acylation of two lysines. After secretion, CyaA invades eukaryotic cells and produces cAMP, leading to host defense subversion. To gain further insights into the effect of acylation, we compared the functional and structural properties of pro-CyaA and CyaA proteins. HDX-MS results show that the refolding process of both proteins upon progressive urea removal is initiated by calcium binding to the C-terminal RTX domain. We further identified a critical hydrophobic segment, distal from the acylation region, that folds at higher urea concentration in CyaA than in pro-CyaA. Once refolded into monomers, CyaA is more compact and stable than pro-CyaA, due to a complex set of interactions between domains. Our HDX-MS data provide direct evidence that the presence of acyl chains in CyaA induces a significant stabilization of the apolar segments of the hydrophobic domain and of most of the acylation region. We propose a refolding model dependent on calcium and driven by local and distal acylation-dependent interactions within CyaA. Therefore, CyaA acylation is not only critical for cell intoxication, but also for protein refolding into its active conformation. Our data shed light on the complex relationship between post-translational modifications, structural disorder and protein folding. Coupling calcium-binding and acylation-driven folding is likely pertinent for other repeat-in-toxin cytolysins produced by many Gram-negative bacterial pathogens.-O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douché, T., Matondo, M., Brier, S., Ladant, D., Chenal, A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Bordetella pertussis/metabolism , Protein Processing, Post-Translational , Acylation , Adenylate Cyclase Toxin/metabolism , Amino Acid Sequence , Anilino Naphthalenesulfonates/pharmacology , Animals , Bordetella pertussis/genetics , Erythrocytes/drug effects , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Protein Conformation , Protein Domains , Protein Folding , Protein Stability , Recombinant Proteins/chemistry , Sheep , Structure-Activity Relationship , Tandem Mass Spectrometry , Urea
9.
J Biomol NMR ; 73(6-7): 293-303, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31124002

ABSTRACT

Secretion pili, bacterial fibers responsible for transporting proteins to the extracellular milieu in some secretion systems, are very strong structures but at the same time highly flexible. Their flexibility and helical symmetry make structure determination at atomic resolution a challenging task. We have previously used an integrative structural biology approach including liquid-state NMR, cryo-electron microscopy (cryo-EM), and modeling to determine the pseudo-atomic resolution structure of the type 2 secretion system pseudopilus in a mutant form, where we employed NMR to determine the high resolution structure of the pilin (the monomer building block of the pilus). In this work, we determine the pseudo-atomic structure of the wild type pilus, and compare the dynamics of wild type and mutant pili by normal mode analysis. We present a detailed NMR analysis of the dynamics of the pilin in isolation, and compare dynamics and solvent accessibility of isolated and assembled pilins by Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS). These complementary approaches provide a comprehensive view of internal and overall dynamics of pili, crucial for their function.


Subject(s)
Bacterial Proteins/chemistry , Fimbriae, Bacterial/chemistry , Models, Molecular , Type II Secretion Systems , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Fimbriae, Bacterial/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Solvents/chemistry
10.
Pathog Dis ; 76(8)2018 11 01.
Article in English | MEDLINE | ID: mdl-30452651

ABSTRACT

The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Calmodulin/metabolism , Cyclic AMP/metabolism , Acylation , Adenylate Cyclase Toxin/chemistry , Calcium/metabolism , Cell Membrane/metabolism , Eukaryotic Cells , Humans , Membrane Potentials , Permeability , Protein Binding , Protein Conformation , Protein Folding , Protein Processing, Post-Translational , Protein Transport
11.
Elife ; 72018 10 18.
Article in English | MEDLINE | ID: mdl-30334738

ABSTRACT

Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs' molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.


Subject(s)
Amino Acid Transport System X-AG/chemistry , Amino Acid Transport System X-AG/metabolism , Consensus Sequence , Excitatory Amino Acid Transporter 1/chemistry , Excitatory Amino Acid Transporter 1/metabolism , Temperature , Amino Acid Sequence , Deuterium Exchange Measurement , Humans , Kinetics , Models, Molecular , Mutant Proteins/chemistry , Neurotransmitter Agents/metabolism , Protein Stability , Protein Subunits/chemistry , Protein Unfolding
12.
Toxicon ; 149: 37-44, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29337218

ABSTRACT

The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Calcium/chemistry , Models, Biological , Whooping Cough/microbiology , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis , Eukaryotic Cells/microbiology , Protein Domains , Protein Folding , Protein Translocation Systems , Protein Transport
13.
Biotechnol Appl Biochem ; 65(1): 62-68, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28770577

ABSTRACT

Small-angle X-ray scattering (SAXS) is a relatively simple experimental technique that provides information on the global conformation of macromolecules in solution, be they fully structured, partially, or extensively unfolded. Size exclusion chromatography in line with a SAXS measuring cell considerably improves the monodispersity and ideality of solutions, the two main requirements of a "good" SAXS sample. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) offers a wealth of information regarding the solvent accessibility at the local (peptide) level. It constitutes a sensitive probe of local flexibility and, more generally, of structural dynamics. The combination of both approaches presented here is very powerful, as illustrated by the case of RD, a calcium-binding protein that is part of a bacterial virulence factor.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Bordetella pertussis/chemistry , Calcium/chemistry , Binding Sites , Deuterium Exchange Measurement , Mass Spectrometry , Models, Molecular , Quantum Theory , Scattering, Small Angle , X-Ray Diffraction
14.
Biochem J ; 475(1): 341-354, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29229758

ABSTRACT

In bacteria, one primary and multiple alternative sigma (σ) factors associate with the RNA polymerase core enzyme (E) to form holoenzymes (Eσ) with different promoter recognition specificities. The alternative σ factor RpoS/σS is produced in stationary phase and under stress conditions and reprograms global gene expression to promote bacterial survival. To date, the three-dimensional structure of a full-length free σ factor remains elusive. The current model suggests that extensive interdomain contacts in a free σ factor result in a compact conformation that masks the DNA-binding determinants of σ, explaining why a free σ factor does not bind double-stranded promoter DNA efficiently. Here, we explored the solution conformation of σS using amide hydrogen/deuterium exchange coupled with mass spectrometry, NMR, analytical ultracentrifugation and molecular dynamics. Our data strongly argue against a compact conformation of free σS Instead, we show that σS adopts an open conformation in solution in which the folded σ2 and σ4 domains are interspersed by domains with a high degree of disorder. These findings suggest that E binding induces major changes in both the folding and domain arrangement of σS and provide insights into the possible mechanisms of regulation of σS activity by its chaperone Crl.


Subject(s)
Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial , Holoenzymes/chemistry , Recombinant Fusion Proteins/chemistry , Salmonella typhimurium/enzymology , Sigma Factor/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Deuterium Exchange Measurement , Escherichia coli/enzymology , Escherichia coli/genetics , Holoenzymes/genetics , Holoenzymes/metabolism , Kinetics , Molecular Dynamics Simulation , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Salmonella typhimurium/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Solvents , Thermodynamics
15.
PLoS Biol ; 15(12): e2004486, 2017 12.
Article in English | MEDLINE | ID: mdl-29287065

ABSTRACT

Once translocated into the cytosol of target cells, the catalytic domain (AC) of the adenylate cyclase toxin (CyaA), a major virulence factor of Bordetella pertussis, is potently activated by binding calmodulin (CaM) to produce supraphysiological levels of cAMP, inducing cell death. Using a combination of small-angle X-ray scattering (SAXS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), and synchrotron radiation circular dichroism (SR-CD), we show that, in the absence of CaM, AC exhibits significant structural disorder, and a 75-residue-long stretch within AC undergoes a disorder-to-order transition upon CaM binding. Beyond this local folding, CaM binding induces long-range allosteric effects that stabilize the distant catalytic site, whilst preserving catalytic loop flexibility. We propose that the high enzymatic activity of AC is due to a tight balance between the CaM-induced decrease of structural flexibility around the catalytic site and the preservation of catalytic loop flexibility, allowing for fast substrate binding and product release. The CaM-induced dampening of AC conformational disorder is likely relevant to other CaM-activated enzymes.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Bordetella pertussis/chemistry , Calmodulin/chemistry , Adenylate Cyclase Toxin/metabolism , Adenylate Cyclase Toxin/physiology , Bordetella pertussis/pathogenicity , Calcium Signaling , Calmodulin/metabolism , Calmodulin/physiology , Catalysis , Catalytic Domain , Circular Dichroism , Cyclic AMP/metabolism , Deuterium Exchange Measurement , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Scattering, Small Angle , Synchrotrons
16.
Sci Rep ; 7(1): 15544, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138428

ABSTRACT

Abscisic acid (ABA), stress and ripening (ASR) proteins are plant-specific proteins involved in plant response to multiple abiotic stresses. We previously isolated the ASR genes and cDNAs from durum wheat (TtASR1) and barley (HvASR1). Here, we show that HvASR1 and TtASR1 are consistently predicted to be disordered and further confirm this experimentally. Addition of glycerol, which mimics dehydration, triggers a gain of structure in both proteins. Limited proteolysis showed that they are highly sensitive to protease degradation. Addition of 2,2,2-trifluoroethanol (TFE) however, results in a decreased susceptibility to proteolysis that is paralleled by a gain of structure. Mass spectrometry analyses (MS) led to the identification of a protein fragment resistant to proteolysis. Addition of zinc also induces a gain of structure and Hydrogen/Deuterium eXchange-Mass Spectrometry (HDX-MS) allowed identification of the region involved in the disorder-to-order transition. This study is the first reported experimental characterization of HvASR1 and TtASR1 proteins, and paves the way for future studies aimed at unveiling the functional impact of the structural transitions that these proteins undergo in the presence of zinc and at achieving atomic-resolution conformational ensemble description of these two plant intrinsically disordered proteins (IDPs).


Subject(s)
Hordeum/metabolism , Plant Proteins , Stress, Physiological , Triticum/metabolism , Abscisic Acid , Intrinsically Disordered Proteins/chemistry , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Folding , Proteolysis
17.
Structure ; 25(11): 1645-1656.e5, 2017 11 07.
Article in English | MEDLINE | ID: mdl-28966015

ABSTRACT

Hearing relies on the transduction of sound-evoked vibrations into electric signals, occurring in the stereocilia bundle of hair cells. The bundle is organized in a staircase pattern formed by rows of packed stereocilia. This architecture is pivotal to transduction and involves a network of scaffolding proteins with hitherto uncharacterized features. Key interactions in this network are mediated by PDZ domains. Here, we describe the architecture of the first two PDZ domains of whirlin, a protein involved in these assemblies and associated with congenital deaf-blindness. C-terminal hairpin extensions of the PDZ domains mediate the transient supramodular assembly, which improves the binding capacity of the first domain. We determined a detailed structural model of the closed conformation of the PDZ tandem and characterized its equilibrium with an ensemble of open conformations. The structural and dynamic behavior of this PDZ tandem provides key insights into the regulatory mechanisms involved in the hearing machinery.


Subject(s)
Membrane Proteins/chemistry , Nerve Tissue Proteins/chemistry , PDZ Domains , Peptides/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Molecular Dynamics Simulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Peptides/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
18.
Nature ; 544(7651): 446-451, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28424515

ABSTRACT

Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.


Subject(s)
Allosteric Regulation/drug effects , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 1/chemistry , Allosteric Site/drug effects , Crystallization , Crystallography, X-Ray , Deuterium Exchange Measurement , Excitatory Amino Acid Transporter 1/metabolism , Humans , Mass Spectrometry , Models, Molecular , Protein Domains/drug effects
19.
J Biol Chem ; 292(1): 328-338, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27903652

ABSTRACT

Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4-5 kJ/mol/protomer in the N3 domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy. Formation of native PulD-multimers by mixing protomers that differ in N3 domain stability, suggested that the N3 domain forms a thermodynamic seal onto the prepore. This highlights the role of modest free energy changes in the folding of pre-integration forms of a hyperstable outer membrane complex and reveals a key driving force for assembly independently of the ß-barrel assembly machinery.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Folding , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutation/genetics , Protein Binding , Protein Conformation , Protein Multimerization , Protein Stability , Sequence Homology, Amino Acid
20.
Curr Allergy Asthma Rep ; 16(9): 64, 2016 09.
Article in English | MEDLINE | ID: mdl-27534655

ABSTRACT

Proteomics encompasses a variety of approaches unraveling both the structural features, post-translational modifications, and abundance of proteins. As of today, proteomic studies have shed light on the primary structure of about 850 allergens, enabling the design of microarrays for improved molecular diagnosis. Proteomic methods including mass spectrometry allow as well to investigate protein-protein interactions, thus yielding precise information on critical epitopes on the surface of allergens. Mass spectrometry is now being applied to the unambiguous identification, characterization, and comprehensive quantification of allergens in a variety of matrices, as diverse as food samples and allergen immunotherapy drug products. As such, it represents a method of choice for quality testing of allergen immunotherapy products.


Subject(s)
Hypersensitivity/diagnosis , Immunotherapy/methods , Proteomics/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...