Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3114, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210470

ABSTRACT

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Subject(s)
SARS-CoV-2
2.
SLAS Discov ; 25(2): 163-175, 2020 02.
Article in English | MEDLINE | ID: mdl-31875412

ABSTRACT

Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.


Subject(s)
Biological Assay , Epigenesis, Genetic/genetics , Structure-Activity Relationship , Chromatin Assembly and Disassembly/genetics , DNA Methylation/genetics , Fluorescence Resonance Energy Transfer , Histone Code/genetics , Humans , Luciferases/chemistry
3.
Antioxid Redox Signal ; 18(18): 2420-8, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23121537

ABSTRACT

SIGNIFICANCE: Living organisms are under constant assault by a combination of environmental and endogenous oxidative DNA damage, inducing the modification of proteins, lipids, and DNA. Failure to resolve these oxidative modifications is associated with genome instability and the development of many disease states. To maintain genomic integrity, oxidative lesions must be precisely targeted and efficiently resolved. For this, cells have evolved an intricate network of DNA repair mechanisms to detect and repair oxidative DNA damage. RECENT ADVANCES: Emerging evidence suggests that in addition to the base excision repair and nucleotide excision repair pathways, the DNA mismatch repair (MMR) pathway plays an important role in mediating oxidative DNA damage repair. Studies in lower organisms and mammalian cells have enabled us to further dissect this critical role and elucidate the precise mechanisms of repair. CRITICAL ISSUES: Identification of synthetic lethal interactions between MMR deficiency and the accumulation of oxidative DNA damage raises the tantalizing prospect that oxidative DNA-damaging agents may be utilized to selectively target MMR-deficient cancers and potentially other tumor types deficient for oxidative DNA repair molecules. FUTURE DIRECTIONS: In this review, we emphasize the clinical relevance and potential translation of exploiting this oxidative DNA repair mechanism using synthetic lethality studies in MMR-deficient cells, to develop improved treatment strategies that will benefit cancer patients.


Subject(s)
DNA Damage , DNA Mismatch Repair , Oxidative Stress , Animals , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/therapy , DNA Adducts/genetics , DNA Adducts/metabolism , Genomic Instability , Humans , MutS DNA Mismatch-Binding Protein/physiology , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Reactive Oxygen Species/metabolism
4.
PLoS Biol ; 7(9): e1000199, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19771147

ABSTRACT

Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.


Subject(s)
Dendrites/metabolism , Lower Extremity/innervation , Motor Neurons/cytology , Neuropil/metabolism , Signal Transduction , Animals , Dendrites/ultrastructure , Drosophila Proteins/metabolism , Drosophila melanogaster , Lower Extremity/embryology , Lower Extremity/physiology , Microscopy, Confocal , Motor Neurons/metabolism , Nerve Growth Factors/metabolism , Nerve Net , Nerve Tissue Proteins/metabolism , Netrin Receptors , Netrins , Neuropil/cytology , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , Roundabout Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...