Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28985483

ABSTRACT

Molecularly imprinted polymers (MIPs) were synthesized and used as sorbent for Bisphenol A (BPA) pipette tip solid-phase microextraction from urine samples and BPA analysis by gas chromatography coupled to mass spectrometry (GC-MS). The MIPs were synthesized by the sol-gel methodology. Aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) were used as functional monomer and cross-linking reagent, respectively. BPA and tetrabromobisphenol A (TBBPA) were evaluated as template during MIP synthesis. The BPA-based MIP displayed slightly higher extraction efficiency than the TBBPA-based dummy molecularly imprinted polymer (DMIP), but the TBBPA-based DMIP was selected as sorbent to minimize interference from leaked template. Comparison of the TBBPA-based DMIP, BPA-based MIP, and non-imprinted polymer (NIP) extraction efficiencies attested that the TBBPA-based DMIP was selective. The synthesized polymers were characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). The TBBPA-based DMIP was reused for over 100 times, which confirmed its robustness. The developed method was linear from 50 to 500ngmL-1. Precision values had coefficient of variation (CV) ranging from 4 to 14%. The accuracy relative standard deviation values (RSD) varied from -13.6 to 12.3%.


Subject(s)
Benzhydryl Compounds/urine , Gas Chromatography-Mass Spectrometry/methods , Molecular Imprinting/methods , Phenols/urine , Solid Phase Extraction/methods , Humans , Limit of Detection , Linear Models , Polybrominated Biphenyls/chemistry , Propylamines/chemistry , Reproducibility of Results , Silanes/chemistry
2.
Am J Orthod Dentofacial Orthop ; 151(3): 477-483, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28257732

ABSTRACT

INTRODUCTION: The objectives of this study were to quantify in vitro the Bisphenol A (BPA) release from 5 orthodontic composites and to assess in vivo the BPA level in patients' saliva and urine after bracket bonding with an orthodontic adhesive system. METHODS: For the in-vitro portion of this study, 5 orthodontic composites were evaluated: Eagle Spectrum (American Orthodontics, Sheboygan, Wis), Enlight (Ormco, Orange, Calif), Light Bond (Reliance Orthodontic Products, Itasca, Ill), Mono Lok II (Rocky Mountain Orthodontics, Denver, Colo), and Transbond XT (3M Unitek, Monrovia, Calif). Simulating intraoral conditions, the specimens were immersed in a water/ethanol solution, and the BPA (ng.g-1) liberation was measured after 30 minutes, 24 hours, 1 day, 1 week, and 1 month by the gas chromatography system coupled with mass spectrometry. Twenty patients indicated for fixed orthodontic treatment participated in the in-vivo study. Saliva samples were collected before bracket bonding and then 30 minutes, 24 hours, 1 day, 1 week, and 1 month after bonding the brackets. Urine samples were collected before bonding and then at 1 day, 1 week, and 1 month after bonding. The results were analyzed statistically using analysis of variance and Tukey posttest, with a significance level of 5%. RESULTS: All composites evaluated in vitro released small amounts of BPA. Enlight composite showed the greatest release, at 1 month. Regarding the in-vivo study, the mean BPA level in saliva increased significantly only at 30 minutes after bonding in comparison with measurements recorded before bonding. CONCLUSIONS: All orthodontic composites released BPA in vitro. Enlight and Light Bond had, respectively, the highest and lowest BPA releases in vitro. The in-vivo experiment showed that bracket bonding with the Transbond XT orthodontic adhesive system resulted in increased BPA levels in saliva and urine. The levels were significant but still lower than the reference dose for daily ingestion.


Subject(s)
Benzhydryl Compounds/analysis , Dental Cements/chemistry , Phenols/analysis , Resin Cements/chemistry , Saliva/chemistry , Urine/chemistry , Chromatography, Gas , Composite Resins , Humans , In Vitro Techniques , Orthodontic Brackets
SELECTION OF CITATIONS
SEARCH DETAIL
...