Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
APL Photonics ; 9(2)2024.
Article in English | MEDLINE | ID: mdl-38681736

ABSTRACT

Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies.

2.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543782

ABSTRACT

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

3.
J Chem Phys ; 154(2): 024201, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33445893

ABSTRACT

Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a Nd:YAG laser in xenon gas. This process has a low efficiency, typically producing only nJ/pulse of VUV light. Simple models of the tripling process predict that the power of 118 nm light produced should increase quadratically with increasing xenon pressure. However, experimental 118 nm production has been observed to reach a maximum and then decrease to zero with increasing xenon pressure. Here, we describe the basic theory and experimental setup for producing 118 nm light and a new proposed model for the mechanism limiting the production based on pressure broadened absorption.

4.
Opt Lett ; 45(17): 4939, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870895

ABSTRACT

This publisher's note contains corrections to Opt. Lett.44, 4737 (2019) OPLEDP0146-959210.1364/OL.44.004737.

5.
Opt Lett ; 44(19): 4737-4740, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568430

ABSTRACT

Octave-spanning frequency combs have been successfully demonstrated in Kerr nonlinear microresonators. These microcombs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engineered coupling, to efficiently extract the generated light into an access waveguide while maintaining a close to critically coupled pump. The latter is challenging, as the spatial overlap between the access waveguide and the ring modes decays with frequency. This leads to strong coupling variation across the octave, with poor extraction at short wavelengths. Here, we investigate how a waveguide wrapped around a portion of the resonator, in a pulley scheme, can improve the extraction of octave-spanning microcombs, in particular at short wavelengths. We use the coupled-mode theory to predict the performance of the pulley couplers and demonstrate good agreement with experimental measurements. Using an optimal pulley coupling design, we demonstrate a 20 dB improvement in extraction at short wavelengths compared to straight waveguide coupling.

6.
Opt Express ; 27(4): 3873-3883, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876012

ABSTRACT

A technique to integrate key functions of a Kerr-microresonator optical frequency comb into one device, i.e., a dual-parallel Mach-Zehnder interferometer (DP-MZI), is proposed. In the technique, a DP-MZI enables the control of carrier envelope offset frequency (fceo), as well as repetition frequency (frep), in addition to generating a stable dissipative Kerr soliton. In experiments, influences on fceo and frep by pump frequency and power modulation via a DP-MZI are investigated, followed by a demonstration of long-term full stabilization of a microresonator soliton comb to a fiber-based optical frequency comb. As another example demonstration, timing jitter of a microresonator soliton comb is significantly suppressed by referencing to a fiber through a two-wavelength delayed self-heterodyne interferometer (TWDI).

7.
Optica ; 6(12)2019.
Article in English | MEDLINE | ID: mdl-34796261

ABSTRACT

The on-chip creation of coherent light at visible wavelengths is crucial to field-level deployment of spectroscopy and metrology systems. Although on-chip lasers have been implemented in specific cases, a general solution that is not restricted by limitations of specific gain media has not been reported. Here, we propose creating visible light from an infrared pump by widely-separated optical parametric oscillation (OPO) using silicon nanophotonics. The OPO creates signal and idler light in the 700 nm and 1300 nm bands, respectively, with a 900 nm pump. It operates at a threshold power of (0.9 ± 0.1) mW, over 50× smaller than other widely-separated microcavity OPO works, which have only been reported in the infrared. This low threshold enables direct pumping without need of an intermediate optical amplifier. We further show how the device design can be modified to generate 780 nm and 1500 nm light with a similar power efficiency. Our nanophotonic OPO shows distinct advantages in power efficiency, operation stability, and device scalability, and is a major advance towards flexible on-chip generation of coherent visible light.

8.
Nat Photonics ; 13(9)2019.
Article in English | MEDLINE | ID: mdl-38567245

ABSTRACT

The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to link the telecommunications band with visible and short near-infrared wavelengths can enable a connection between high-performance chip-integrated lasers based on scalable nanofabrication technology with atomic systems used for time and frequency metrology. While second-order nonlinear (χ(2)) systems are the natural approach for bridging such large spectral gaps, here we show that third-order nonlinear (χ(3)) systems, despite their typically much weaker nonlinear response, can realize spectral translation with unprecedented performance. By combining resonant enhancement with nanophotonic mode engineering in a silicon nitride microring resonator, we demonstrate efficient spectral translation of a continuous-wave signal from the telecom band (≈ 1550 nm) to the visible band (≈ 650 nm) through cavity-enhanced four-wave mixing. We achieve such translation over a wide spectral range >250 THz with a translation efficiency of (30.1 ± 2.8) % and using an ultra-low pump power of (329 ± 13) µW. The translation efficiency projects to (274 ± 28) % at 1 mW and is more than an order of magnitude larger than what has been achieved in current nanophotonic devices.

9.
Phys Rev Lett ; 121(6): 063902, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141662

ABSTRACT

We explore the dynamical response of dissipative Kerr solitons to changes in pump power and detuning and show how thermal and nonlinear processes couple these parameters to the frequency-comb degrees of freedom. Our experiments are enabled by a Pound-Drever-Hall (PDH) stabilization approach that provides on-demand, radio-frequency control of the frequency comb. PDH locking not only guides Kerr-soliton formation from a cold microresonator but opens a path to decouple the repetition and carrier-envelope-offset frequencies. In particular, we demonstrate phase stabilization of both Kerr-comb degrees of freedom to a fractional frequency precision below 10^{-16}, compatible with optical-time-keeping technology. Moreover, we investigate the fundamental role that residual laser-resonator detuning noise plays in the spectral purity of microwave generation with Kerr combs.

10.
Opt Lett ; 43(12): 2933-2936, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29905727

ABSTRACT

We report accurate phase stabilization of an interlocking pair of Kerr-microresonator frequency combs. The two combs, one based on silicon nitride and one on silica, feature nearly harmonic repetition frequencies and can be generated with one laser. The silicon-nitride comb supports an ultrafast-laser regime with three-optical-cycle, 1-picosecond-period soliton pulses and a total dispersive-wave-enhanced bandwidth of 170 THz, while providing a stable phase-link between optical and microwave frequencies. We demonstrate nanofabrication control of the silicon-nitride comb's carrier-envelope offset frequency and spectral profile. The phase-locked combs coherently reproduce their clock with a fractional precision of <6×10-13/τ, a behavior we verified through 2 h of measurement to reach <3×10-16. Our work establishes Kerr combs as a viable technology for applications like optical-atomic timekeeping and optical synchronization.

11.
Nature ; 557(7703): 81-85, 2018 05.
Article in English | MEDLINE | ID: mdl-29695870

ABSTRACT

Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission 1 , highly optimized physical sensors 2 and harnessing quantum states 3 , to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III-V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 × 10-15 or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, low-power and compact integrated-photonics devices to be widely used.

12.
Optica ; 4(2): 193-203, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28603754

ABSTRACT

Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants often require fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-soliton state with a pump power near 120 mW. We also develop a simplified two-step analysis to explain how these states are accessed without fast control of the pump laser, and outline the required thermal properties for such operation. Our model agrees with experimental results as well as numerical simulations based on a Lugiato-Lefever equation that incorporates thermo-optic dispersion. Moreover, it also explains an experimental observation that a member of an adjacent mode family on the red-detuned side of the pump mode can mitigate the thermal requirements for accessing soliton states.

13.
Opt Express ; 18(21): 21861-72, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20941086

ABSTRACT

We present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm(-1) maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm(-1) spectral region. We achieve part-per-billion detection limits in 30 seconds of integration time for several important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features.


Subject(s)
Optics and Photonics , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods , Biomarkers/metabolism , Butadienes/chemistry , Equipment Design , Ethane/chemistry , Hemiterpenes/chemistry , Humans , Methane/chemistry , Models, Statistical , Nitrous Oxide/chemistry , Pentanes/chemistry , Time Factors
14.
Opt Express ; 18(10): 9739-46, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20588824

ABSTRACT

We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135 masculine phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications.


Subject(s)
Lenses , Micro-Electrical-Mechanical Systems/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Transducers , Vibration
15.
J Cyst Fibros ; 7(4): 267-269, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18249160

ABSTRACT

Salt transport defects in CF lungs predispose to overwhelming and fatal respiratory infection caused by Pseudomonas aeruginosa. Motility of this organism is central to pathogenesis in a number of settings. Incubation of numerous strains of P. aeruginosa with hypertonic saline caused a concentration-dependent decrease in bacterial motility. Reduction of P. aeruginosa virulence through this effect may contribute to clinical efficacy of hypertonic saline aerosols in CF patients.


Subject(s)
Anti-Infective Agents/pharmacology , Cystic Fibrosis/drug therapy , Flagella/drug effects , Pseudomonas aeruginosa/drug effects , Saline Solution, Hypertonic/pharmacology , Administration, Inhalation , Biofilms/drug effects , Chemotaxis/drug effects , Cystic Fibrosis/complications , Humans , Pseudomonas Infections/complications , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/physiology , Respiratory Tract Infections/complications , Respiratory Tract Infections/prevention & control
16.
Microb Pathog ; 40(5): 228-33, 2006 May.
Article in English | MEDLINE | ID: mdl-16540281

ABSTRACT

Of the proteins on the surface of Streptococcus pneumoniae, one of those best able to elicit protection against pneumococcal infection is pneumococcal surface protein A (PspA). Although this protein is attached to the membrane molecule, lipoteichoic acid, which is well beneath the capsule, PspA's ability to inhibit complement deposition and killing by apolactoferrin, suggests that it must have surface exposure. This study provides quantitative data showing that the capsular polysaccharide on types 2 and 3 pneumococci provides little or no masking ability of antibodies to bind PspA. Capsule was even observed to enhance, rather than inhibit the binding of two protective monoclonal antibodies to their epitopes on cell surface PspA. These results with antibodies to PspA are in contrast to binding by antibodies to the phosphocholine (PC) epitope of the lipoteichoic and teichoic acids. The binding of antibody to PC was largely, but not completely, blocked by capsular polysaccharide.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Capsules/immunology , Bacterial Proteins/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Bacterial Capsules/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fluorescent Antibody Technique, Indirect/methods , Mutation , Phosphorylcholine/immunology , Phosphorylcholine/metabolism , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...