Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 4(9): 1571-1581, 2019 09.
Article in English | MEDLINE | ID: mdl-31160824

ABSTRACT

Glycans are the major carbon sources available to the human colonic microbiota. Numerous N-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut Bacteroides spp. have the capacity to utilize complex N-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by Bacteroides thetaiotaomicron (Bt) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides Bt with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.


Subject(s)
Bacteroides/enzymology , Bacteroides/genetics , Gene Expression Regulation, Bacterial , Intestines/microbiology , Polysaccharides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides/growth & development , Crystallography, X-Ray , Gene Expression Profiling , Genetic Loci/genetics , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Polysaccharides/chemistry , Symbiosis
2.
Biomed Res Int ; 2015: 582471, 2015.
Article in English | MEDLINE | ID: mdl-26504814

ABSTRACT

Some bacteria can carry out anaerobic respiration by depositing electrons on external materials, such as electrodes, thereby creating an electrical current. Into the anode chamber of microbial fuel cells (MFCs) having abiotic air-cathodes we inoculated microorganisms cultured from a magnetic particle-enriched portion of a marine tidal sediment, reasoning that since some external electron acceptors are ferromagnetic, electrogenic bacteria should be found in their vicinity. Two MFCs, one inoculated with a mixed bacterial culture and the other with an axenic culture of a helical bacterium isolated from the magnetic particle enrichment, termed strain HJ, were operated for 65 d. Both MFCs produced power, with production from the mixed culture MFC exceeding that of strain HJ. Strain HJ was identified as a Thalassospira sp. by transmission electron microscopic analysis and 16S rRNA gene comparisons. An MFC inoculated with strain HJ and operated in open circuit produced 47% and 57% of the maximal power produced from MFCs inoculated with the known electrogen Geobacter daltonii and the magnetotactic bacterium Desulfamplus magnetomortis, respectively. Further investigation will be needed to determine whether bacterial populations associated with magnetic particles within marine sediments are enriched for electrogens.


Subject(s)
Alphaproteobacteria/isolation & purification , Bioelectric Energy Sources/microbiology , Ferrosoferric Oxide/chemistry , Geologic Sediments/microbiology , Alphaproteobacteria/chemistry , Alphaproteobacteria/genetics , DNA, Bacterial/genetics , Electrophysiological Phenomena
3.
Genome Announc ; 3(3)2015 May 14.
Article in English | MEDLINE | ID: mdl-25977412

ABSTRACT

We present the draft genome of the petroleum-degrading Thalassospira sp. strain HJ, isolated from tidal marine sediment. Knowledge of this genomic information will inform studies on electrogenesis and means to degrade environmental organic contaminants, including compounds found in petroleum.

SELECTION OF CITATIONS
SEARCH DETAIL
...