Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233296

ABSTRACT

In bacteria, DNA-methyltransferase are responsible for DNA methylation of specific motifs in the genome. This methylation usually occurs at a very high rate. In the present study, we studied the MTases encoding genes found in the entomopathogenic bacteria Xenorhabdus. Only one persistent MTase was identified in the various species of this genus. This MTase, also broadly conserved in numerous Gram-negative bacteria, is called Dam: DNA-adenine MTase. Methylome analysis confirmed that the GATC motifs recognized by Dam were methylated at a rate of >99% in the studied strains. The observed enrichment of unmethylated motifs in putative promoter regions of the X. nematophila F1 strain suggests the possibility of epigenetic regulations. The overexpression of the Dam MTase responsible for additional motifs to be methylated was associated with impairment of two major phenotypes: motility, caused by a downregulation of flagellar genes, and hemolysis. However, our results suggest that dam overexpression did not modify the virulence properties of X. nematophila. This study increases the knowledge on the diverse roles played by MTases in bacteria.


Subject(s)
Site-Specific DNA-Methyltransferase (Adenine-Specific) , Xenorhabdus , Adenine , DNA , DNA Methylation , DNA Modification Methylases/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Xenorhabdus/genetics
2.
Nucleic Acids Res ; 49(14): 8384-8395, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34255843

ABSTRACT

Bacteria have evolved sophisticated mechanisms to deliver potent toxins into bacterial competitors or into eukaryotic cells in order to destroy rivals and gain access to a specific niche or to hijack essential metabolic or signaling pathways in the host. Delivered effectors carry various activities such as nucleases, phospholipases, peptidoglycan hydrolases, enzymes that deplete the pools of NADH or ATP, compromise the cell division machinery, or the host cell cytoskeleton. Effectors categorized in the family of polymorphic toxins have a modular structure, in which the toxin domain is fused to additional elements acting as cargo to adapt the effector to a specific secretion machinery. Here we show that Photorhabdus laumondii, an entomopathogen species, delivers a polymorphic antibacterial toxin via a type VI secretion system. This toxin inhibits protein synthesis in a NAD+-dependent manner. Using a biotinylated derivative of NAD, we demonstrate that translation is inhibited through ADP-ribosylation of the ribosomal 23S RNA. Mapping of the modification further showed that the adduct locates on helix 44 of the thiostrepton loop located in the GTPase-associated center and decreases the GTPase activity of the EF-G elongation factor.


Subject(s)
Bacterial Toxins/pharmacology , GTP Phosphohydrolases/genetics , RNA, Ribosomal, 23S/genetics , Type VI Secretion Systems/drug effects , ADP-Ribosylation/drug effects , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , NAD/genetics , Peptide Elongation Factor G/genetics , Photorhabdus/chemistry , Photorhabdus/genetics , Protein Biosynthesis/drug effects , RNA, Ribosomal, 23S/drug effects , Thiostrepton/chemistry , Thiostrepton/pharmacology
3.
Front Microbiol ; 12: 685670, 2021.
Article in English | MEDLINE | ID: mdl-34054792

ABSTRACT

DNA methylation can be part of epigenetic mechanisms, leading to cellular subpopulations with heterogeneous phenotypes. While prokaryotic phenotypic heterogeneity is of critical importance for a successful infection by several major pathogens, the exact mechanisms involved in this phenomenon remain unknown in many cases. Powerful sequencing tools have been developed to allow the detection of the DNA methylated bases at the genome level, and they have recently been extensively applied on numerous bacterial species. Some of these tools are increasingly used for metagenomics analysis but only a limited amount of the available methylomic data is currently being exploited. Because newly developed tools now allow the detection of subpopulations differing in their genome methylation patterns, it is time to emphasize future strategies based on a more extensive use of methylomic data. This will ultimately help to discover new epigenetic gene regulations involved in bacterial phenotypic heterogeneity, including during host-pathogen interactions.

4.
PLoS One ; 14(10): e0212655, 2019.
Article in English | MEDLINE | ID: mdl-31596856

ABSTRACT

Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.


Subject(s)
Bacterial Proteins/metabolism , Insecta/microbiology , Nematoda/microbiology , Photorhabdus/enzymology , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Symbiosis/physiology , Animals
5.
Sci Rep ; 8(1): 12091, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108278

ABSTRACT

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of methylation (>94%) were identified. The methylome was strikingly stable over course of growth, but also in a subpopulation responsible for a critical step in the bacterium's lifecycle: successful survival and proliferation in insects. The rare unmethylated GATC motifs were preferentially located in putative promoter regions, and most of them were methylated after Dam methyltransferase overexpression, suggesting that DNA methylation is involved in gene regulation. Our findings bring key insight into bacterial methylomes and encourage further research to decipher the role of loci protected from DNA methylation in gene regulation.


Subject(s)
Adenine/metabolism , DNA Methylation , Gene Expression Regulation, Bacterial , Insecta/microbiology , Photorhabdus/genetics , Animals , DNA, Bacterial/genetics , Genetic Loci/genetics , Genome, Bacterial/genetics , Nucleotide Motifs/genetics , Photorhabdus/metabolism , Promoter Regions, Genetic/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Whole Genome Sequencing
6.
Front Microbiol ; 8: 1671, 2017.
Article in English | MEDLINE | ID: mdl-28919886

ABSTRACT

Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.

7.
Sci Rep ; 7: 43670, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28252016

ABSTRACT

Some of the bacterial cells in isogenic populations behave differently from others. We describe here how a new type of phenotypic heterogeneity relating to resistance to cationic antimicrobial peptides (CAMPs) is determinant for the pathogenic infection process of the entomopathogenic bacterium Photorhabdus luminescens. We demonstrate that the resistant subpopulation, which accounts for only 0.5% of the wild-type population, causes septicemia in insects. Bacterial heterogeneity is driven by the PhoPQ two-component regulatory system and expression of pbgPE, an operon encoding proteins involved in lipopolysaccharide (LPS) modifications. We also report the characterization of a core regulon controlled by the DNA-binding PhoP protein, which governs virulence in P. luminescens. Comparative RNAseq analysis revealed an upregulation of marker genes for resistance, virulence and bacterial antagonism in the pre-existing resistant subpopulation, suggesting a greater ability to infect insect prey and to survive in cadavers. Finally, we suggest that the infection process of P. luminescens is based on a bet-hedging strategy to cope with the diverse environmental conditions experienced during the lifecycle.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial , Enterobacteriaceae Infections/microbiology , Photorhabdus/drug effects , Photorhabdus/genetics , Animals , Disk Diffusion Antimicrobial Tests , Gene Expression Profiling , Gene Expression Regulation , Gene Order , Genes, Bacterial , Insecta/microbiology , Mutation , Operon , Photorhabdus/pathogenicity , Virulence/genetics
8.
FEMS Microbiol Lett ; 363(16)2016 08.
Article in English | MEDLINE | ID: mdl-27435329

ABSTRACT

Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.


Subject(s)
Adaptation, Physiological/genetics , Bacillus cereus/genetics , Cold Temperature , Fatty Acid Desaturases/genetics , Histidine Kinase/genetics , Bacillus cereus/enzymology , Bacillus cereus/growth & development , Bacillus cereus/physiology , Culture Media/chemistry , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Histidine Kinase/metabolism
9.
Sci Total Environ ; 562: 751-759, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27110986

ABSTRACT

Fresh produce has been a growing cause of food borne outbreaks world-wide prompting the need for safer production practices. Yet fresh produce agrifood systems are diverse and under constraints for more sustainability. We analyze how measures taken to guarantee safety interact with other objectives for sustainability, in light of the diversity of fresh produce agrifood systems. The review is based on the publications at the interface between fresh produce safety and sustainability, with sustainability defined by low environmental impacts, food and nutrition security and healthy life. The paths for more sustainable fresh produce are diverse. They include an increased use of ecosystem services to e.g. favor predators of pests, or to reduce impact of floods, to reduce soil erosion, or to purify run-off waters. In contrast, they also include production systems isolated from the environment. From a socio-economical view, sustainability may imply maintaining small tenures with a higher risk of pathogen contamination. We analyzed the consequences for produce safety by focusing on risks of contamination by water, soil, environment and live stocks. Climate change may increase the constraints and recent knowledge on interactions between produce and human pathogens may bring new solutions. Existing technologies may suffice to resolve some conflicts between ensuring safety of fresh produce and moving towards more sustainability. However, socio-economic constraints of some agri-food systems may prevent their implementation. In addition, current strategies to preserve produce safety are not adapted to systems relying on ecological principles and knowledge is lacking to develop the new risk management approaches that would be needed.


Subject(s)
Agriculture , Food Microbiology , Food Safety/methods , Food , Conservation of Natural Resources/methods , Ecosystem , Food Contamination/statistics & numerical data
10.
J Vis Exp ; (118)2016 12 05.
Article in English | MEDLINE | ID: mdl-28060260

ABSTRACT

The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.


Subject(s)
Bacillus cereus/chemistry , Chromatography , Fatty Acids, Unsaturated/analysis , Fatty Acids/analysis , Adaptation, Physiological
11.
Front Microbiol ; 6: 813, 2015.
Article in English | MEDLINE | ID: mdl-26300876

ABSTRACT

The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.

12.
BMC Res Notes ; 8: 329, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26227277

ABSTRACT

BACKGROUND: The Bacillus cereus Group consists of closely-related bacteria, including pathogenic or harmless strains, and whose species can be positioned along the seven phylogenetic groups of Guinebretière et al. (I-VII). They exhibit different growth-temperature ranges, through thermotolerant to psychrotolerant thermotypes. Among these, B. cytotoxicus is an atypical thermotolerant and food-poisoning agent affiliated to group VII whose thermotolerance contrasts with the mesophilic and psychrotolerant thermotypes associated to the remaining groups I-VI. To understand the role of fatty acid (FA) composition in these variable thermotypes (i.e. growth behavior vs temperatures), we report specific features differentiating the FA pattern of B. cytotoxicus (group VII) from its counterparts (groups I-VI). FINDINGS: The FA pattern of thermotolerant group VII (B. cytotoxicus) displayed several specific features. Most notably, we identified a high ratio of the branched-chain FAs iso-C15/iso-C13 (i15/i13) and the absence of the unsaturated FA (UFA) C16:1(5) consistent with the absence of ∆5 desaturase DesA. Conversely, phylogenetic groups II-VI were characterized by lower i15/i13 ratios and variable proportions of C16:1(5) depending on thermotype, and presence of the DesA desaturase. In mesophilic group I, thermotype seemed to be related to an atypically high amount of C16:1(10) that may involve ∆10 desaturase DesB. CONCLUSION: The levels of i15/i13 ratio, C16:1(5) and C16:1(10) UFAs were related to growth temperature variations recorded between thermotypes and/or phylogenetic groups. These FA are likely to play a role in membrane fluidity and may account for the differences in temperature tolerance observed in B. cereus Group strains.


Subject(s)
Bacillus cereus/genetics , Algorithms , Bacillus cereus/physiology , Bacterial Physiological Phenomena , Computational Biology/methods , Fatty Acids/analysis , Genome, Bacterial , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Software , Species Specificity , Temperature
13.
Int J Food Microbiol ; 213: 110-7, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-25987542

ABSTRACT

Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.


Subject(s)
Adaptation, Physiological/genetics , Bacillus cereus/enzymology , Fatty Acids/metabolism , Food Microbiology , Foodborne Diseases/microbiology , Guanylate Kinases/physiology , Receptors, Calcium-Sensing/physiology , Bacillus cereus/genetics , Cold Temperature , Culture Media/chemistry , Fatty Acid Desaturases/metabolism , Fatty Acids/analysis , Gene Expression Profiling , Guanylate Kinases/genetics , Humans , Phospholipids/metabolism , Receptors, Calcium-Sensing/genetics
14.
Biomed Res Int ; 2015: 356928, 2015.
Article in English | MEDLINE | ID: mdl-25918712

ABSTRACT

The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.


Subject(s)
Bacillus cereus/isolation & purification , Soil Microbiology , Water Cycle , Water Microbiology , Animals , Bacillus cereus/pathogenicity , Environment , Food Microbiology , Foodborne Diseases/microbiology
15.
Appl Environ Microbiol ; 80(8): 2493-503, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24509924

ABSTRACT

The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains.


Subject(s)
Bacillus cereus/growth & development , Bacillus cereus/radiation effects , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Stress, Physiological , Transcription Factors/metabolism , Bacillus cereus/genetics , Bacterial Proteins/genetics , Cold Temperature , Gene Deletion , Genetic Complementation Test , Protein Kinases/genetics , Transcription Factors/genetics
16.
Gut Microbes ; 5(1): 58-63, 2014.
Article in English | MEDLINE | ID: mdl-24256737

ABSTRACT

Bacteria survive under various conditions by sensing stimuli triggering specific adaptive physiological responses, which are often based on membrane-integrated sensors connected to a cytoplasmic regulator. Recent studies reveal that mucus glycans may act as signal molecules for two-component systems involved in intestinal colonization. Bacillus cereus, a human and insect opportunistic pathogen was used to identify bacterial factors expressed in an insect gut infection model. The screen revealed a promoter involved in the expression of a gene with so far unknown functions. A search for gut-related compounds, inducing its transcription, identified glucose-6-phosphate as an activation signal. The gene is part of a five-gene cluster, including a two-component system. Interestingly such five gene loci are conserved in the pathogenic Bacillus group as well as in various Clostridia bacteria and are with analogy to other multi-component sensor systems in enteropathogenic bacteria, such as E. coli. Thus our results provide insights into the function of two-component and auxiliary sensor systems in host-microbe interactions and opens up possible investigations of such systems in other gut associated bacteria.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Glucose-6-Phosphate/pharmacology , Sugar Phosphates/analysis , Animals
17.
FASEB J ; 26(8): 3336-50, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22611084

ABSTRACT

Using a previously developed Bacillus cereus in vivo expression technology (IVET) promoter trap system, we showed that spsA, a gene of unknown function, was specifically expressed in the larval gut during infection. Search for gut-related compounds inducing spsA transcription identified glucose-6-phosphate (G6P) as an activation signal. Analysis of the spsA-related 5-gene cluster indicated that SpsA is part of a new sugar phosphate sensor system composed of a 2-component system (TCS) encoded by spsR and spsK, and 2 additional downstream genes, spsB and spsC. In B. cereus, American Type Culture Collection (ATCC) 14579, spsRK, and spsABC are separate transcriptional units, of which only spsABC was activated by extracellular G6P. lacZ transcriptional fusions tested in mutant and complemented strains showed that SpsRK, SpsA, and SpsB are essential for the transcription of spsABC. Deletion mutant analysis showed that SpsC is essential for the G6P uptake. gfp-transcriptional fusions showed that these genes are required for host-activated expression, as well. This sugar phosphate sensor and transport system is found in pathogenic Bacillus group and Clostridia bacteria and may be important for host adaptation. Our findings provide new insights into the function of 2-component sensor systems in host-pathogen interactions, specifically in the gut.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Glucose-6-Phosphate/pharmacology , Sugar Phosphates/analysis , Animals , Biosensing Techniques/methods , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Glucose-6-Phosphate/metabolism , Host-Pathogen Interactions , Larva/microbiology , Moths/genetics , Moths/microbiology , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/physiology , Sugar Phosphates/metabolism
18.
Appl Environ Microbiol ; 77(16): 5604-9, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21705526

ABSTRACT

In this study, growth rates and lag times of the five RNA helicase-deleted mutants of Bacillus cereus ATCC 14579 were compared to those of the wild-type strain under thermal, oxidative, and pH stresses. Deletion of cshD and cshE had no impact under any of the tested conditions. Deletion of cshA, cshB, and cshC abolished growth at 12°C, confirming previous results. In addition, we found that each RNA helicase had a role in a specific temperature range: deletion of cshA reduced growth at all the tested temperatures up to 45°C, deletion of cshB had impact below 30°C and over 37°C, and deletion of cshC led mainly to a cold-sensitive phenotype. Under oxidative conditions, deletion of cshB and cshC reduced growth rate and increased lag time, while deletion of cshA increased lag time only with H(2)O(2) and reduced growth rate at a high diamide concentration. Growth of the ΔcshA strain was affected at a basic pH independently of the temperature, while these conditions had a limited effect on ΔcshB and ΔcshC strain growth. The RNA helicases CshA, CshB, and CshC could participate in a general adaptation pathway to stressful conditions, with a stronger impact at low temperature and a wider role of CshA.


Subject(s)
Adaptation, Physiological , Bacillus cereus/enzymology , Oxidative Stress , RNA Helicases/metabolism , Temperature , Bacillus cereus/drug effects , Bacillus cereus/genetics , Bacillus cereus/growth & development , Diamide/pharmacology , Gene Deletion , Genes, Bacterial , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , RNA Helicases/genetics
19.
Appl Environ Microbiol ; 76(19): 6692-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20709848

ABSTRACT

Bacillus cereus ATCC 14579 possesses five RNA helicase-encoding genes overexpressed under cold growth conditions. Out of the five corresponding mutants, only the ΔcshA, ΔcshB, and ΔcshC strains were cold sensitive. Growth of the ΔcshA strain was also reduced at 30°C but not at 37°C. The cold phenotype was restored with the cshA gene for the ΔcshA strain and partially for the ΔcshB strain but not for the ΔcshC strain, suggesting different functions at low temperature.


Subject(s)
Adaptation, Physiological , Bacillus cereus/enzymology , Bacillus cereus/physiology , Bacterial Proteins/metabolism , Cold Temperature , RNA Helicases/metabolism , Bacillus cereus/growth & development , Bacterial Proteins/genetics , Gene Deletion , Genetic Complementation Test , RNA Helicases/deficiency
20.
FEMS Microbiol Lett ; 306(2): 177-83, 2010 May.
Article in English | MEDLINE | ID: mdl-20370835

ABSTRACT

Transposon mutagenesis of Bacillus cereus ATCC 14579 yielded cold-sensitive mutants. Mutants of genes encoding enzymes of the central metabolism were affected by cold, but also by other stresses, such as pH or salt, whereas a mutant with transposon insertion in the promoter region of BC0259 gene, encoding a putative DEAD-box RNA helicase displaying homology with Escherichia coli CsdA and Bacillus subtilis CshA RNA helicases, was only cold-sensitive. Expression of the BC0259 gene at 10 degrees C is reduced in the mutant. Analysis of the 5' untranslated region revealed the transcriptional start and putative cold shock-responsive elements. The role of this RNA helicase in the cold-adaptive response of B. cereus is discussed.


Subject(s)
Bacillus cereus/growth & development , Bacillus cereus/genetics , Genes, Bacterial , Mutagenesis, Insertional , RNA Helicases/physiology , 5' Untranslated Regions , Amino Acid Sequence , Bacillus cereus/physiology , Bacillus cereus/radiation effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Cold Temperature , DEAD-box RNA Helicases/genetics , DNA Transposable Elements , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Deletion , Humans , Molecular Sequence Data , RNA Helicases/genetics , Sequence Homology , Stress, Physiological , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...