Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37669225

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Subject(s)
Antiviral Agents , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
3.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34472587

ABSTRACT

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

4.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34111271

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
5.
J Med Chem ; 64(8): 4913-4946, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33822623

ABSTRACT

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).


Subject(s)
Enzyme Inhibitors/chemistry , Isocitrate Dehydrogenase/antagonists & inhibitors , Pyridones/chemistry , Animals , Brain/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Half-Life , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Nude , Microsomes, Liver/metabolism , Mutagenesis, Site-Directed , Neoplasms/drug therapy , Neoplasms/pathology , Pyridines/therapeutic use , Pyridones/metabolism , Pyridones/therapeutic use , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33771585

ABSTRACT

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Ethers/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Aniline Compounds/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ethers/chemistry , Humans , L-Lactate Dehydrogenase/chemistry
7.
bioRxiv ; 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33300000

ABSTRACT

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of MICHA (Minimal Information for Chemosensitivity Assays), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents, and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets, and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies, as well as six recently conducted COVID-19 studies. With the MICHA webserver and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

8.
Proc Natl Acad Sci U S A ; 117(49): 31365-31375, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229545

ABSTRACT

When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Protease Inhibitors/analysis , Protease Inhibitors/pharmacology , Zika Virus/drug effects , Animals , Antiviral Agents/therapeutic use , Artificial Intelligence , Chlorocebus aethiops , Disease Models, Animal , Immunocompetence , Inhibitory Concentration 50 , Methacycline/pharmacology , Mice, Inbred C57BL , Protease Inhibitors/therapeutic use , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Vero Cells , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
9.
CBE Life Sci Educ ; 19(4): ar51, 2020 12.
Article in English | MEDLINE | ID: mdl-33001768

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) defines translational science as "the field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process." A major goal of translational science is to determine commonalities across projects to identify principles for addressing persistent bottlenecks in this process. To meet this goal, translational scientists must be conversant in multiple disciplines, work in teams, and understand the larger translational science ecosystem. The development of these skills through translational science training opportunities, such as the translational science training offered by the NCATS intramural research program, prepares fellows for a variety of career options. The unique structure of the NCATS intramural program and the career outcomes of its alumni are described herein to demonstrate the distinct features of this training environment, the productivity of fellows during their time in training, and how this prepares fellows to be competitive for a variety of science careers. To date, the NCATS intramural research program has trained 213 people, ranging from high school to postdoctoral levels. These alumni have transitioned into a wide array of career functions, types, and sectors.


Subject(s)
Biomedical Research , National Center for Advancing Translational Sciences (U.S.) , Biomedical Research/education , Biomedical Research/statistics & numerical data , Career Mobility , Humans , National Center for Advancing Translational Sciences (U.S.)/statistics & numerical data , Translational Research, Biomedical/education , Translational Research, Biomedical/statistics & numerical data , United States
10.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32902275

ABSTRACT

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Mice , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
bioRxiv ; 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32511420

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

13.
ACS Cent Sci ; 6(5): 672-683, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32483554

ABSTRACT

The global pandemic of SARS-CoV-2, the causative viral pathogen of COVID-19, has driven the biomedical community to action-to uncover and develop antiviral interventions. One potential therapeutic approach currently being evaluated in numerous clinical trials is the agent remdesivir, which has endured a long and winding developmental path. Remdesivir is a nucleotide analogue prodrug that perturbs viral replication, originally evaluated in clinical trials to thwart the Ebola outbreak in 2014. Subsequent evaluation by numerous virology laboratories demonstrated the ability of remdesivir to inhibit coronavirus replication, including SARS-CoV-2. Here, we provide an overview of remdesivir's discovery, mechanism of action, and the current studies exploring its clinical effectiveness.

16.
Mol Cancer Ther ; 19(1): 52-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31562255

ABSTRACT

The tumor microenvironment (TME) is a key determinant of metastatic efficiency. We performed a quantitative high-throughput screen (qHTS) of diverse medicinal chemistry tractable scaffolds (44,420 compounds) and pharmacologically active small molecules (386 compounds) using a layered organotypic, robust assay representing the ovarian cancer metastatic TME. This 3D model contains primary human mesothelial cells, fibroblasts, and extracellular matrix, to which fluorescently labeled ovarian cancer cells are added. Initially, 100 compounds inhibiting ovarian cancer adhesion/invasion to the 3D model in a dose-dependent manner were identified. Of those, eight compounds were confirmed active in five high-grade serous ovarian cancer cell lines and were further validated in secondary in vitro and in vivo biological assays. Two tyrosine kinase inhibitors, PP-121 and milciclib, and a previously unreported compound, NCGC00117362, were selected because they had potency at 1 µmol/L in vitro Specifically, NCGC00117362 and PP-121 inhibited ovarian cancer adhesion, invasion, and proliferation, whereas milciclib inhibited ovarian cancer invasion and proliferation. Using in situ kinase profiling and immunoblotting, we found that milciclib targeted Cdk2 and Cdk6, and PP-121 targeted mTOR. In vivo, all three compounds prevented ovarian cancer adhesion/invasion and metastasis, prolonged survival, and reduced omental tumor growth in an intervention study. To evaluate the clinical potential of NCGC00117362, structure-activity relationship studies were performed. Four close analogues of NCGC00117362 efficiently inhibited cancer aggressiveness in vitro and metastasis in vivo Collectively, these data show that a complex 3D culture of the TME is effective in qHTS. The three compounds identified have promise as therapeutics for prevention and treatment of ovarian cancer metastasis.


Subject(s)
High-Throughput Screening Assays/methods , Neoplasm Metastasis/prevention & control , Ovarian Neoplasms/therapy , Tumor Microenvironment/genetics , Animals , Female , Humans , Mice , Mice, Nude
17.
Mol Pharmacol ; 96(5): 629-640, 2019 11.
Article in English | MEDLINE | ID: mdl-31515284

ABSTRACT

The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs. Although US Food and Drug Administration guidelines require that potential interactions of investigational drugs with P-gp be explored, often this information does not enter the literature. In response, we developed a high-throughput screen to identify substrates of P-gp from a series of chemical libraries, testing a total of 10,804 compounds, most of which have known mechanisms of action. We used the CellTiter-Glo viability assay to test library compounds against parental KB-3-1 human cervical adenocarcinoma cells and the colchicine-selected subline KB-8-5-11 that overexpresses P-gp. KB-8-5-11 cells were also tested in the presence of a P-gp inhibitor (tariquidar) to assess reversibility of transporter-mediated resistance. Of the tested compounds, a total of 90 P-gp substrates were identified, including 55 newly identified compounds. Substrates were confirmed using an orthogonal killing assay against human embryonic kidney-293 cells overexpressing P-gp. We confirmed that AT7159 (cyclin-dependent kinase inhibitor), AT9283, (Janus kinase 2/3 inhibitor), ispinesib (kinesin spindle protein inhibitor), gedatolisib (PKI-587, phosphoinositide 3-kinase/mammalian target of rampamycin inhibitor), GSK-690693 (AKT inhibitor), and KW-2478 (heat-shock protein 90 inhibitor) were substrates. In addition, we assessed direct ATPase stimulation. ABCG2 was also found to confer high levels of resistance to AT9283, GSK-690693, and gedatolisib, whereas ispinesib, AT7519, and KW-2478 were weaker substrates. Combinations of P-gp substrates and inhibitors were assessed to demonstrate on-target synergistic cell killing. These data identified compounds whose oral bioavailability or brain penetration may be affected by P-gp. SIGNIFICANCE STATEMENT: The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to be expressed at barrier sites, where it acts to limit oral bioavailability and brain penetration of substrates. In order to identify novel compounds that are transported by P-gp, we developed a high-throughput screen using the KB-3-1 cancer cell line and its colchicine-selected subline KB-8-5-11. We screened the Mechanism Interrogation Plate (MIPE) library, the National Center for Advancing Translational Science (NCATS) pharmaceutical collection (NPC), the NCATS Pharmacologically Active Chemical Toolbox (NPACT), and a kinase inhibitor library comprising 977 compounds, for a total of 10,804 compounds. Of the 10,804 compounds screened, a total of 90 substrates were identified of which 55 were novel. P-gp expression may adversely affect the oral bioavailability or brain penetration of these compounds.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cytotoxins/metabolism , High-Throughput Screening Assays/methods , Neoplasm Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , HeLa Cells , Humans , Substrate Specificity/drug effects , Substrate Specificity/physiology
18.
Clin Transl Sci ; 11(5): 461-470, 2018 09.
Article in English | MEDLINE | ID: mdl-29877628

ABSTRACT

The Assay Guidance Manual (AGM) is an eBook of best practices for the design, development, and implementation of robust assays for early drug discovery. Initiated by pharmaceutical company scientists, the manual provides guidance for designing a "testing funnel" of assays to identify genuine hits using high-throughput screening (HTS) and advancing them through preclinical development. Combined with a workshop/tutorial component, the overall goal of the AGM is to provide a valuable resource for training translational scientists.


Subject(s)
Biological Assay/methods , Drug Discovery , Geography , High-Throughput Screening Assays , Humans , Translational Research, Biomedical
19.
J Biol Chem ; 293(35): 13750-13765, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29945974

ABSTRACT

The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nucleosomes/metabolism , Repressor Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nucleosomes/drug effects , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry
20.
Bioorg Med Chem ; 26(8): 1727-1739, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29555419

ABSTRACT

Proliferating cells, including cancer cells, obtain serine both exogenously and via the metabolism of glucose. By catalyzing the first, rate-limiting step in the synthesis of serine from glucose, phosphoglycerate dehydrogenase (PHGDH) controls flux through the biosynthetic pathway for this important amino acid and represents a putative target in oncology. To discover inhibitors of PHGDH, a coupled biochemical assay was developed and optimized to enable high-throughput screening for inhibitors of human PHGDH. Feedback inhibition was minimized by coupling PHGDH activity to two downstream enzymes (PSAT1 and PSPH), providing a marked improvement in enzymatic turnover. Further coupling of NADH to a diaphorase/resazurin system enabled a red-shifted detection readout, minimizing interference due to compound autofluorescence. With this protocol, over 400,000 small molecules were screened for PHGDH inhibition, and following hit validation and triage work, a piperazine-1-thiourea was identified. Following rounds of medicinal chemistry and SAR exploration, two probes (NCT-502 and NCT-503) were identified. These molecules demonstrated improved target activity and encouraging ADME properties, enabling in vitro assessment of the biological importance of PHGDH, and its role in the fate of serine in PHGDH-dependent cancer cells. This manuscript reports the assay development and medicinal chemistry leading to the development of NCT-502 and -503 reported in Pacold et al. (2016).


Subject(s)
Enzyme Inhibitors/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Piperazines/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Humans , Molecular Structure , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Piperazines/chemical synthesis , Piperazines/chemistry , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...