Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Hum Brain Mapp ; 45(7): e26698, 2024 May.
Article in English | MEDLINE | ID: mdl-38726908

ABSTRACT

Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate "mediators". Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a "compressed CST." The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5-11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.


Subject(s)
Electroencephalography , Humans , Electroencephalography/methods , Child , Child, Preschool , Female , Male , Connectome/methods , Cognition/physiology , Malnutrition/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/physiology , Brain/physiopathology , Brain/diagnostic imaging , Brain/physiology , Infant
2.
Front Neurosci ; 18: 1237245, 2024.
Article in English | MEDLINE | ID: mdl-38680452

ABSTRACT

We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.

3.
Front Neurosci ; 17: 1149102, 2023.
Article in English | MEDLINE | ID: mdl-37781256

ABSTRACT

Objective: This study compares the complementary information from semi-quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect the life-long effects of early childhood malnutrition on the brain. Methods: Resting-state EEGs (N = 202) from the Barbados Nutrition Study (BNS) were used to examine the effects of protein-energy malnutrition (PEM) on childhood and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG (GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested the dependence of sqNPS and nutritional group. sqEEG was compared with scores on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. Multivariate LME was applied to assess each EEG modality separately and combined under longitudinal settings. Results: The univariate LME showed highly significant differences between previously malnourished and control groups (p < 0.001); age (p = 0.01) was also significant, with no interaction between group and age detected. Childhood sqNPS (p = 0.02) and adulthood sqNPS (p = 0.003) predicted MoCA scores in adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had the highest predictive power (mean AUC 0.92 ± 0.005). Finally, multivariate LME showed that the combined spectral-qEEG+sqEEG models had the highest log-likelihood (-479.7). Conclusion: This research has extended our prior work with spectral-qEEG and the long-term impact of early childhood malnutrition on the brain. Our findings showed that sqNPS was significantly linked to accelerated cognitive aging at 45-51 years of age. While sqNPS and spectral-qEEG produced comparable results, our study indicated that combining sqNPS and spectral-qEEG yielded better performance than either method alone, suggesting that a multimodal approach could be advantageous for future investigations. Significance: Based on our findings, a semi-quantitative approach utilizing GTE could be a valuable diagnostic tool for detecting the lasting impacts of childhood malnutrition. Notably, sqEEG has not been previously explored or reported as a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, our observations suggest that sqEEG offers unique features and information not captured by spectral quantitative EEG analysis and could lead to its improvement.

4.
Sci Rep ; 13(1): 11466, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454235

ABSTRACT

Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.


Subject(s)
Brain Mapping , Brain , Animals , Humans , Bayes Theorem , Brain Mapping/methods , Electrocorticography , Alpha Rhythm , Macaca , Electroencephalography/methods , Magnetoencephalography/methods , Models, Neurological
5.
Front Neurosci ; 17: 978527, 2023.
Article in English | MEDLINE | ID: mdl-37008210

ABSTRACT

Oscillatory processes at all spatial scales and on all frequencies underpin brain function. Electrophysiological Source Imaging (ESI) is the data-driven brain imaging modality that provides the inverse solutions to the source processes of the EEG, MEG, or ECoG data. This study aimed to carry out an ESI of the source cross-spectrum while controlling common distortions of the estimates. As with all ESI-related problems under realistic settings, the main obstacle we faced is a severely ill-conditioned and high-dimensional inverse problem. Therefore, we opted for Bayesian inverse solutions that posited a priori probabilities on the source process. Indeed, rigorously specifying both the likelihoods and a priori probabilities of the problem leads to the proper Bayesian inverse problem of cross-spectral matrices. These inverse solutions are our formal definition for cross-spectral ESI (cESI), which requires a priori of the source cross-spectrum to counter the severe ill-condition and high-dimensionality of matrices. However, inverse solutions for this problem were NP-hard to tackle or approximated within iterations with bad-conditioned matrices in the standard ESI setup. We introduce cESI with a joint a priori probability upon the source cross-spectrum to avoid these problems. cESI inverse solutions are low-dimensional ones for the set of random vector instances and not random matrices. We achieved cESI inverse solutions through the variational approximations via our Spectral Structured Sparse Bayesian Learning (ssSBL) algorithm https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning. We compared low-density EEG (10-20 system) ssSBL inverse solutions with reference cESIs for two experiments: (a) high-density MEG that were used to simulate EEG and (b) high-density macaque ECoG that were recorded simultaneously with EEG. The ssSBL resulted in two orders of magnitude with less distortion than the state-of-the-art ESI methods. Our cESI toolbox, including the ssSBL method, is available at https://github.com/CCC-members/BC-VARETA_Toolbox.

6.
Neuroimage ; 274: 120137, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37116767

ABSTRACT

This paper introduces methods and a novel toolbox that efficiently integrates high-dimensional Neural Mass Models (NMMs) specified by two essential components. The first is the set of nonlinear Random Differential Equations (RDEs) of the dynamics of each neural mass. The second is the highly sparse three-dimensional Connectome Tensor (CT) that encodes the strength of the connections and the delays of information transfer along the axons of each connection. To date, simplistic assumptions prevail about delays in the CT, often assumed to be Dirac-delta functions. In reality, delays are distributed due to heterogeneous conduction velocities of the axons connecting neural masses. These distributed-delay CTs are challenging to model. Our approach implements these models by leveraging several innovations. Semi-analytical integration of RDEs is done with the Local Linearization (LL) scheme for each neural mass, ensuring dynamical fidelity to the original continuous-time nonlinear dynamic. This semi-analytic LL integration is highly computationally-efficient. In addition, a tensor representation of the CT facilitates parallel computation. It also seamlessly allows modeling distributed delays CT with any level of complexity or realism. This ease of implementation includes models with distributed-delay CTs. Consequently, our algorithm scales linearly with the number of neural masses and the number of equations they are represented with, contrasting with more traditional methods that scale quadratically at best. To illustrate the toolbox's usefulness, we simulate a single Zetterberg-Jansen and Rit (ZJR) cortical column, a single thalmo-cortical unit, and a toy example comprising 1000 interconnected ZJR columns. These simulations demonstrate the consequences of modifying the CT, especially by introducing distributed delays. The examples illustrate the complexity of explaining EEG oscillations, e.g., split alpha peaks, since they only appear for distinct neural masses. We provide an open-source Script for the toolbox.


Subject(s)
Connectome , Electroencephalography , Humans , Electroencephalography/methods , Computer Simulation , Axons , Algorithms
7.
Front Neurosci ; 17: 1249282, 2023.
Article in English | MEDLINE | ID: mdl-38260018

ABSTRACT

The severity of the pandemic and its consequences on health and social care systems were quite diverse and devastating. COVID-19 was associated with an increased risk of neurological and neuropsychiatric disorders after SARS-CoV-2 infection. We did a cross-sectional study of 3 months post-COVID consequences of 178 Cuban subjects. Our study has a unique CUBAN COVID-19 cohort of hospitalized COVID-19 patients and healthy subjects. We constructed a latent variable for pre-health conditions (PHC) through Item Response Theory (IRT) and for post-COVID neuropsychiatric symptoms (Post-COVID-NPS) through Factor Analysis (FA). There seems to be a potential causal relationship between determinants of CIBD and post-COVID-NPS in hospitalized COVID-19 patients. The causal relationships accessed by Structural Equation Modeling (SEM) revealed that PHC (p < 0.001) and pre-COVID cognitive impairments (p < 0.001) affect the severity of COVID-19 patients. The severity of COVID-19 eventually results in enhanced post-COVID-NPS (p < 0.001), even after adjusting for confounders (age, sex, and pre-COVID-NPS). The highest loadings in PHC were for cardiovascular diseases, immunological disorders, high blood pressure, and diabetes. On the other hand, sex (p < 0.001) and pre-COVID-NPS including neuroticism (p < 0.001), psychosis (p = 0.005), cognition (p = 0.036), and addiction (p < 0.001) were significantly associated with post-COVID-NPS. The most common neuropsychiatric symptom with the highest loadings includes pain, fatigue syndrome, autonomic dysfunctionalities, cardiovascular disorders, and neurological symptoms. Compared to healthy people, COVID-19 patients with pre-health comorbidities or pre-neuropsychiatric conditions will have a high risk of getting severe COVID-19 and long-term post-COVID neuropsychiatric consequences. Our study provides substantial evidence to highlight the need for a complete neuropsychiatric follow-up on COVID-19 patients (with severe illness) and survivors (asymptomatic patients who recovered).

8.
Front Hum Neurosci ; 17: 1287488, 2023.
Article in English | MEDLINE | ID: mdl-38298205

ABSTRACT

Introduction: Early childhood malnutrition affects 200+ million children under 5 years of age worldwide and is associated with persistent cognitive, behavioral and psychiatric impairments in adulthood. However, very few studies have investigated the long-term effects of childhood protein-energy malnutrition (PEM) on brain function using a functional hemodynamic brain imaging technique. Objective and methods: This study aims to investigate functional brain network alterations using near infrared spectroscopy (NIRS) in adults, aged 45-51 years, from the Barbados Nutrition Study (BNS) who suffered from a single episode of malnutrition restricted to their first year of life (n = 26) and controls (n = 29). A total of 55 individuals from the BNS cohort underwent NIRS recording at rest. Results and discussion: Using functional connectivity and permutation analysis, we found patterns of increased Pearson's correlation with a specific vulnerability of the frontal cortex in the PEM group (ps < 0.05). Using a graph theoretical approach, mixed ANCOVAs showed increased segregation (ps = 0.0303 and 0.0441) and decreased integration (p = 0.0498) in previously malnourished participants compared to healthy controls. These results can be interpreted as a compensatory mechanism to preserve cognitive functions, that could also be related to premature or pathological brain aging. To our knowledge, this study is the first NIRS neuroimaging study revealing brain function alterations in middle adulthood following early childhood malnutrition limited to the first year of life.

9.
Front Neurosci ; 16: 841428, 2022.
Article in English | MEDLINE | ID: mdl-35844232

ABSTRACT

We report on the quantitative electroencephalogram (qEEG) and cognitive effects of Neuroepo in Parkinson's disease (PD) from a double-blind safety trial (https://clinicaltrials.gov/, number NCT04110678). Neuroepo is a new erythropoietin (EPO) formulation with a low sialic acid content with satisfactory results in animal models and tolerance in healthy participants and PD patients. In this study, 26 PD patients were assigned randomly to Neuroepo (n = 15) or placebo (n = 11) groups to test the tolerance of the drug. Outcome variables were neuropsychological tests and resting-state source qEEG at baseline and 6 months after administering the drug. Probabilistic Canonical Correlation Analysis was used to extract latent variables for the cognitive and for qEEG variables that shared a common source of variance. We obtained canonical variates for Cognition and qEEG with a correlation of 0.97. Linear Mixed Model analysis showed significant positive dependence of the canonical variate cognition on the dose and the confounder educational level (p = 0.003 and p = 0.02, respectively). Additionally, in the mediation equation, we found a positive dependence of Cognition with qEEG for (p = < 0.0001) and with dose (p = 0.006). Despite the small sample, both tests were powered over 89%. A combined mediation model showed that 66% of the total effect of the cognitive improvement was mediated by qEEG (p = 0.0001), with the remaining direct effect between dose and Cognition (p = 0.002), due to other causes. These results suggest that Neuroepo has a positive influence on Cognition in PD patients and that a large portion of this effect is mediated by brain mechanisms reflected in qEEG.

10.
Front Hum Neurosci ; 16: 884251, 2022.
Article in English | MEDLINE | ID: mdl-35845242

ABSTRACT

More than 200 million children under the age of 5 years are affected by malnutrition worldwide according to the World Health Organization. The Barbados Nutrition Study (BNS) is a 55-year longitudinal study on a Barbadian cohort with histories of moderate to severe protein-energy malnutrition (PEM) limited to the first year of life and a healthy comparison group. Using quantitative electroencephalography (EEG), differences in brain function during childhood (lower alpha1 activity and higher theta, alpha2 and beta activity) have previously been highlighted between participants who suffered from early PEM and controls. In order to determine whether similar differences persisted into adulthood, our current study used recordings obtained during a Go-No-Go task in a subsample of the original BNS cohort [population size (N) = 53] at ages 45-51 years. We found that previously malnourished adults [sample size (n) = 24] had a higher rate of omission errors on the task relative to controls (n = 29). Evoked-Related Potentials (ERP) were significantly different in participants with histories of early PEM, who presented with lower N2 amplitudes. These findings are typically associated with impaired conflict monitoring and/or attention deficits and may therefore be linked to the attentional and executive function deficits that have been previously reported in this cohort in childhood and again in middle adulthood.

13.
Hum Brain Mapp ; 43(14): 4370-4382, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35665983

ABSTRACT

In this study, we want to explore evidence for the causal relationship between the anatomical descriptors of the cingulate cortex (surface area, mean curvature-corrected thickness, and volume) and the performance of cognitive tasks such as Card Sort, Flanker, List Sort used as instruments to measure the executive functions of flexibility, inhibitory control, and working memory. We have performed this analysis in a cross-sectional sample of 899 healthy young subjects of the Human Connectome Project. To the best of our knowledge, this is the first study using causal inference to explain the relationship between cingulate morphology and the performance of executive tasks in healthy subjects. We have tested the causal model under a counterfactual framework using stabilized inverse probability of treatment weighting and marginal structural models. The results showed that the posterior cingulate surface area has a positive causal effect on inhibition (Flanker task) and cognitive flexibility (Card Sort). A unit increase (+1 mm2 ) in the posterior cingulate surface area will cause a 0.008% and 0.009% increase from the National Institute of Health (NIH) normative mean in Flankers (p-value <0.001), and Card Sort (p-value 0.005), respectively. Furthermore, a unit increase (+1 mm2 ) in the anterior cingulate surface area will cause a 0.004% (p-value <0.001) and 0.005% (p-value 0.001) increase from the NIH normative mean in Flankers and Card Sort. In contrast, the curvature-corrected-mean thickness only showed an association for anterior cingulate with List Sort (p = 0.034) but no causal effect.


Subject(s)
Connectome , Executive Function , Cerebral Cortex , Cross-Sectional Studies , Executive Function/physiology , Humans , Memory, Short-Term/physiology , Young Adult
14.
Neuroimage ; 256: 119190, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35398285

ABSTRACT

This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.


Subject(s)
Brain Diseases , COVID-19 , Brain/diagnostic imaging , Brain Mapping , Electroencephalography/methods , Humans
15.
Neuroimage ; 254: 119144, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35342003

ABSTRACT

Protein Energy Malnutrition (PEM) has lifelong consequences on brain development and cognitive function. We studied the lifelong developmental trajectories of resting-state EEG source activity in 66 individuals with histories of Protein Energy Malnutrition (PEM) limited to the first year of life and in 83 matched classmate controls (CON) who are all participants of the 49 years longitudinal Barbados Nutrition Study (BNS). qEEGt source z-spectra measured deviation from normative values of EEG rhythmic activity sources at 5-11 years of age and 40 years later at 45-51 years of age. The PEM group showed qEEGt abnormalities in childhood, including a developmental delay in alpha rhythm maturation and an insufficient decrease in beta activity. These profiles may be correlated with accelerated cognitive decline.


Subject(s)
Cognitive Dysfunction , Protein-Energy Malnutrition , Electroencephalography , Humans , Longitudinal Studies , Nutritional Status
16.
J Neurosci Res ; 100(4): 915-932, 2022 04.
Article in English | MEDLINE | ID: mdl-35194817

ABSTRACT

Working memory (WM) encompasses crucial cognitive processes or abilities to retain and manipulate temporary information for immediate execution of complex cognitive tasks in daily functioning such as reasoning and decision-making. The WM of individuals sustaining traumatic brain injury (TBI) was commonly compromised, especially in the domain of WM. The current study investigated the brain responses of WM in a group of participants with mild-moderate TBI compared to their healthy counterparts employing functional magnetic resonance imaging. All consented participants (healthy: n = 26 and TBI: n = 15) performed two variations of the n-back WM task with four load conditions (0-, 1-, 2-, and 3-back). The respective within-group effects showed a right hemisphere-dominance activation and slower reaction in performance for the TBI group. Random-effects analysis revealed activation difference between the two groups in the right occipital lobe in the guided n-back with cues, and in the bilateral occipital lobe, superior parietal region, and cingulate cortices in the n-back without cues. The left middle frontal gyrus was implicated in the load-dependent processing of WM in both groups. Further group analysis identified that the notable activation changes in the frontal gyri and anterior cingulate cortex are according to low and high loads. Though relatively smaller in scale, this study was eminent as it clarified the neural alterations in WM in the mild-moderate TBI group compared to healthy controls. It confirmed the robustness of the phenomenon in TBI with the reproducibility of the results in a heterogeneous non-Western sample.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries, Traumatic/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Malaysia , Memory, Short-Term/physiology , Reproducibility of Results
17.
Front Neurosci ; 15: 526257, 2021.
Article in English | MEDLINE | ID: mdl-33994912

ABSTRACT

The reconstruction of electrophysiological sources within the brain is sensitive to the constructed head model, which depends on the positioning accuracy of anatomical landmarks known as fiducials. In this work, we propose an algorithm for the automatic detection of fiducial landmarks of EEG electrodes on the 3D human head model. Our proposal combines a dimensional reduction approach with a perspective projection from 3D to 2D object space; the eye and ear automatic detection in a 2D face image by two cascades of classifiers and geometric transformations to obtain 3D spatial coordinates of the landmarks and to generate the head coordinate system, This is accomplished by considering the characteristics of the scanner information. Capturing the 3D model of the head is done with Occipital Inc. ST01 structure sensor and the implementation of our algorithm was carried out on MATLAB R2018b using the Computer Vision Toolbox and the FieldTrip Toolbox. The experimental results were aimed at recursively exploring the efficacy of the facial feature detectors as a function of the projection angle; they show that robust results are obtained in terms of false acceptance rate. Our proposal is an initial step of an approach for the automatic digitization of electrode locations. The experimental results demonstrate that the proposed method detects anatomical facial landmarks automatically, accurately, and rapidly.

18.
Sci Data ; 8(1): 45, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547313

ABSTRACT

The Cuban Human Brain Mapping Project (CHBMP) repository is an open multimodal neuroimaging and cognitive dataset from 282 young and middle age healthy participants (31.9 ± 9.3 years, age range 18-68 years). This dataset was acquired from 2004 to 2008 as a subset of a larger stratified random sample of 2,019 participants from La Lisa municipality in La Habana, Cuba. The exclusion criteria included the presence of disease or brain dysfunctions. Participant data that is being shared comprises i) high-density (64-120 channels) resting-state electroencephalograms (EEG), ii) magnetic resonance images (MRI), iii) psychological tests (MMSE, WAIS-III, computerized go-no go reaction time), as well as iv,) demographic information (age, gender, education, ethnicity, handedness, and weight). The EEG data contains recordings with at least 30 minutes in duration including the following conditions: eyes closed, eyes open, hyperventilation, and subsequent recovery. The MRI consists of anatomical T1 as well as diffusion-weighted (DWI) images acquired on a 1.5 Tesla system. The dataset presented here is hosted by Synapse.org and available at https://chbmp-open.loris.ca .


Subject(s)
Brain Mapping , Cognition , Electroencephalography , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Cuba , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Young Adult
19.
Neuroimage ; 231: 117828, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33549754

ABSTRACT

Approximately one in five children worldwide suffers from childhood malnutrition and its complications, including increased susceptibility to inflammation and infectious diseases. Due to improved early interventions, most of these children now survive early malnutrition, even in low-resource settings (LRS). However, many continue to exhibit neurodevelopmental deficits, including low IQ, poor school performance, and behavioral problems over their lifetimes. Most studies have relied on neuropsychological tests, school performance, and mental health and behavioral measures. Few studies, in contrast, have assessed brain structure and function, and to date, these have mainly relied on low-cost techniques, including electroencephalography (EEG) and evoked potentials (ERP). The use of more advanced methods of neuroimaging, including magnetic resonance imaging (MRI) and functional near-infrared spectroscopy (fNIRS), has been limited by cost factors and lack of availability of these technologies in developing countries, where malnutrition is nearly ubiquitous. This report summarizes the current state of knowledge and evidence gaps regarding childhood malnutrition and the study of its impact on neurodevelopment. It may help to inform the development of new strategies to improve the identification, classification, and treatment of neurodevelopmental disabilities in underserved populations at the highest risk for childhood malnutrition.


Subject(s)
Brain/diagnostic imaging , Malnutrition/diagnostic imaging , Malnutrition/epidemiology , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/epidemiology , Neuroimaging/methods , Child , Electroencephalography/methods , Electroencephalography/trends , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Malnutrition/psychology , Neurodevelopmental Disorders/psychology , Neuroimaging/trends , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/trends
20.
Front Neuroinform ; 14: 33, 2020.
Article in English | MEDLINE | ID: mdl-32848689

ABSTRACT

The Tomographic Quantitative Electroencephalography (qEEGt) toolbox is integrated with the Montreal Neurological Institute (MNI) Neuroinformatics Ecosystem as a docker into the Canadian Brain Imaging Research Platform (CBRAIN). qEEGt produces age-corrected normative Statistical Parametric Maps of EEG log source spectra testing compliance to a normative database. This toolbox was developed at the Cuban Neuroscience Center as part of the first wave of the Cuban Human Brain Mapping Project (CHBMP) and has been validated and used in different health systems for several decades. Incorporation into the MNI ecosystem now provides CBRAIN registered users access to its full functionality and is accompanied by a public release of the source code on GitHub and Zenodo repositories. Among other features are the calculation of EEG scalp spectra, and the estimation of their source spectra using the Variable Resolution Electrical Tomography (VARETA) source imaging. Crucially, this is completed by the evaluation of z spectra by means of the built-in age regression equations obtained from the CHBMP database (ages 5-87) to provide normative Statistical Parametric Mapping of EEG log source spectra. Different scalp and source visualization tools are also provided for evaluation of individual subjects prior to further post-processing. Openly releasing this software in the CBRAIN platform will facilitate the use of standardized qEEGt methods in different research and clinical settings. An updated precis of the methods is provided in Appendix I as a reference for the toolbox. qEEGt/CBRAIN is the first installment of instruments developed by the neuroinformatic platform of the Cuba-Canada-China (CCC) project.

SELECTION OF CITATIONS
SEARCH DETAIL
...