Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36259934

ABSTRACT

The genome of the basidiomycete yeast Dioszegia hungarica strain PDD-24b-2 isolated from cloud water at the summit of puy de Dôme (France) was sequenced using a hybrid PacBio and Illumina sequencing strategy. The obtained assembled genome of 20.98 Mb and a GC content of 57% is structured in 16 large-scale contigs ranging from 90 kb to 5.56 Mb, and another 27.2 kb contig representing the complete circular mitochondrial genome. In total, 8,234 proteins were predicted from the genome sequence. The mitochondrial genome shows 16.2% cgu codon usage for arginine but has no canonical cognate tRNA to translate this codon. Detected transposable element (TE)-related sequences account for about 0.63% of the assembled genome. A dataset of 2,068 hand-picked public environmental metagenomes, representing over 20 Tbp of raw reads, was probed for D. hungarica related ITS sequences, and revealed worldwide distribution of this species, particularly in aerial habitats. Growth experiments suggested a psychrophilic phenotype and the ability to disperse by producing ballistospores. The high-quality assembled genome obtained for this D. hungarica strain will help investigate the behavior and ecological functions of this species in the environment.


Subject(s)
Basidiomycota , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Water , Basidiomycota/genetics , Sequence Analysis, DNA
2.
Microbiol Resour Announc ; 11(10): e0068422, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36106890

ABSTRACT

The complete genome of Sphingomonas aerolata PDD-32b-11, a bacterium isolated from cloud water, was sequenced. It features four circular replicons, a chromosome of 3.99 Mbp, and three plasmids. Two putative rhodopsin-encoding genes were detected which might act as proton pumps to harvest light energy.

3.
Microorganisms ; 10(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35889020

ABSTRACT

Dichloromethane (DCM, methylene chloride) is a toxic halogenated volatile organic compound massively used for industrial applications, and consequently often detected in the environment as a major pollutant. DCM biotransformation suggests a sustainable decontamination strategy of polluted sites. Among methylotrophic bacteria able to use DCM as a sole source of carbon and energy for growth, Methylorubrum extorquens DM4 is a longstanding reference strain. Here, the primary 5'-ends of transcripts were obtained using a differential RNA-seq (dRNA-seq) approach to provide the first transcription start site (TSS) genome-wide landscape of a methylotroph using DCM or methanol. In total, 7231 putative TSSs were annotated and classified with respect to their localization to coding sequences (CDSs). TSSs on the opposite strand of CDS (antisense TSS) account for 31% of all identified TSSs. One-third of the detected TSSs were located at a distance to the start codon inferior to 250 nt (average of 84 nt) with 7% of leaderless mRNA. Taken together, the global TSS map for bacterial growth using DCM or methanol will facilitate future studies in which transcriptional regulation is crucial, and efficient DCM removal at polluted sites is limited by regulatory processes.

4.
Environ Microbiome ; 17(1): 24, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35527282

ABSTRACT

BACKGROUND: Chloromethane (CH3Cl) is the most abundant halogenated organic compound in the atmosphere and substantially responsible for the destruction of the stratospheric ozone layer. Since anthropogenic CH3Cl sources have become negligible with the application of the Montreal Protocol (1987), natural sources, such as vegetation and soils, have increased proportionally in the global budget. CH3Cl-degrading methylotrophs occurring in soils might be an important and overlooked sink. RESULTS AND CONCLUSIONS: The objective of our study was to link the biotic CH3Cl sink with the identity of active microorganisms and their biochemical pathways for CH3Cl degradation in a deciduous forest soil. When tested in laboratory microcosms, biological CH3Cl consumption occurred in leaf litter, senescent leaves, and organic and mineral soil horizons. Highest consumption rates, around 2 mmol CH3Cl g-1 dry weight h-1, were measured in organic soil and senescent leaves, suggesting that top soil layers are active (micro-)biological CH3Cl degradation compartments of forest ecosystems. The DNA of these [13C]-CH3Cl-degrading microbial communities was labelled using stable isotope probing (SIP), and the corresponding taxa and their metabolic pathways studied using high-throughput metagenomics sequencing analysis. [13C]-labelled Metagenome-Assembled Genome closely related to the family Beijerinckiaceae may represent a new methylotroph family of Alphaproteobacteria, which is found in metagenome databases of forest soils samples worldwide. Gene markers of the only known pathway for aerobic CH3Cl degradation, via the methyltransferase system encoded by the CH3Cl utilisation genes (cmu), were undetected in the DNA-SIP metagenome data, suggesting that biological CH3Cl sink in this deciduous forest soil operates by a cmu-independent metabolism.

5.
Environ Microbiol ; 23(8): 4450-4465, 2021 08.
Article in English | MEDLINE | ID: mdl-34121306

ABSTRACT

Chloromethane (CH3 Cl) is the most abundant halogenated volatile organic compound in the atmosphere and contributes to stratospheric ozone depletion. CH3 Cl has mainly natural sources such as emissions from vegetation. In particular, ferns have been recognized as strong emitters. Mitigation of CH3 Cl to the atmosphere by methylotrophic bacteria, a global sink for this compound, is likely underestimated and remains poorly characterized. We identified and characterized CH3 Cl-degrading bacteria associated with intact and living tree fern plants of the species Cyathea australis by stable isotope probing (SIP) with 13 C-labelled CH3 Cl combined with metagenomics. Metagenome-assembled genomes (MAGs) related to Methylobacterium and Friedmanniella were identified as being involved in the degradation of CH3 Cl in the phyllosphere, i.e., the aerial parts of the tree fern, while a MAG related to Sorangium was linked to CH3 Cl degradation in the fern rhizosphere. The only known metabolic pathway for CH3 Cl degradation, via a methyltransferase system including the gene cmuA, was not detected in metagenomes or MAGs identified by SIP. Hence, a yet uncharacterized methylotrophic cmuA-independent pathway may drive CH3 Cl degradation in the investigated tree ferns.


Subject(s)
Ferns , Methyl Chloride , Atmosphere , Bacteria/genetics , Methyltransferases
6.
Microorganisms ; 8(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260855

ABSTRACT

Several bacteria are able to degrade the major industrial solvent dichloromethane (DCM) by using the conserved dehalogenase DcmA, the only system for DCM degradation characterised at the sequence level so far. Using differential proteomics, we rapidly identified key determinants of DCM degradation for Hyphomicrobium sp. MC8b, an unsequenced facultative methylotrophic DCM-degrading strain. For this, we designed a pan-proteomics database comprising the annotated genome sequences of 13 distinct Hyphomicrobium strains. Compared to growth with methanol, growth with DCM induces drastic changes in the proteome of strain MC8b. Dichloromethane dehalogenase DcmA was detected by differential pan-proteomics, but only with poor sequence coverage, suggesting atypical characteristics of the DCM dehalogenation system in this strain. More peptides were assigned to DcmA by error-tolerant search, warranting subsequent sequencing of the genome of strain MC8b, which revealed a highly divergent set of dcm genes in this strain. This suggests that the dcm enzymatic system is less strongly conserved than previously believed, and that substantial molecular evolution of dcm genes has occurred beyond their horizontal transfer in the bacterial domain. Our study showed the power of pan-proteomics for quick characterization of new strains belonging to branches of the Tree of Life that are densely genome-sequenced.

7.
FEMS Microbiol Rev ; 44(2): 189-207, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32011697

ABSTRACT

Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.


Subject(s)
Bacteria/enzymology , Bacteria/genetics , Biodegradation, Environmental , Gene Expression Regulation, Bacterial , Hydrocarbons, Halogenated/metabolism , Bacterial Proteins/genetics , Environmental Pollutants/metabolism , Genetic Variation , Multigene Family/genetics
8.
Plant Cell ; 31(12): 2947-2972, 2019 12.
Article in English | MEDLINE | ID: mdl-31628167

ABSTRACT

Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flowers/metabolism , Terpenes/antagonists & inhibitors , Alkyl and Aryl Transferases/genetics , Animals , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Flowers/genetics , Flowers/microbiology , Gene Expression , Larva , Microbiota , Models, Molecular , Molecular Docking Simulation , Monoterpenes/metabolism , Moths , Multigene Family , Phylogeny , Sesquiterpenes/metabolism , Terpenes/chemistry , Terpenes/metabolism , Nicotiana/metabolism , Yeasts/metabolism
9.
Curr Issues Mol Biol ; 33: 149-172, 2019.
Article in English | MEDLINE | ID: mdl-31166190

ABSTRACT

Chloromethane is a halogenated volatile organic compound, produced in large quantities by terrestrial vegetation. After its release to the troposphere and transport to the stratosphere, its photolysis contributes to the degradation of stratospheric ozone. A better knowledge of chloromethane sources (production) and sinks (degradation) is a prerequisite to estimate its atmospheric budget in the context of global warming. The degradation of chloromethane by methylotrophic communities in terrestrial environments is a major underestimated chloromethane sink. Methylotrophs isolated from soils, marine environments and more recently from the phyllosphere have been grown under laboratory conditions using chloromethane as the sole carbon source. In addition to anaerobes that degrade chloromethane, the majority of cultivated strains were isolated in aerobiosis for their ability to use chloromethane as sole carbon and energy source. Among those, the Proteobacterium Methylobacterium (recently reclassified as Methylorubrum) harbours the only characterisized 'chloromethane utilization' (cmu) pathway, so far. This pathway is not representative of chloromethane-utilizing populations in the environment as cmu genes are rare in metagenomes. Recently, combined 'omics' biological approaches with chloromethane carbon and hydrogen stable isotope fractionation measurements in microcosms, indicated that microorganisms in soils and the phyllosphere (plant aerial parts) represent major sinks of chloromethane in contrast to more recently recognized microbe-inhabited environments, such as clouds. Cultivated chloromethane-degraders lacking the cmu genes display a singular isotope fractionation signature of chloromethane. Moreover, 13CH3Cl labelling of active methylotrophic communities by stable isotope probing in soils identify taxa that differ from the taxa known for chloromethane degradation. These observations suggest that new biomarkers for detecting active microbial chloromethane-utilizers in the environment are needed to assess the contribution of microorganisms to the global chloromethane cycle.


Subject(s)
Energy Metabolism/physiology , Methanol/metabolism , Methyl Chloride/metabolism , Proteobacteria/classification , Proteobacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Geologic Sediments/microbiology , Metabolic Networks and Pathways/genetics , Methylobacterium/classification , Methylobacterium/metabolism , Methylophilaceae/classification , Methylophilaceae/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Soil Microbiology
10.
ISME J ; 12(11): 2681-2693, 2018 11.
Article in English | MEDLINE | ID: mdl-29991765

ABSTRACT

Halogenated volatile organic compounds (VOCs) emitted by terrestrial ecosystems, such as chloromethane (CH3Cl), have pronounced effects on troposphere and stratosphere chemistry and climate. The magnitude of the global CH3Cl sink is uncertain since it involves a largely uncharacterized microbial sink. CH3Cl represents a growth substrate for some specialized methylotrophs, while methanol (CH3OH), formed in much larger amounts in terrestrial environments, may be more widely used by such microorganisms. Direct measurements of CH3Cl degradation rates in two field campaigns and in microcosms allowed the identification of top soil horizons (i.e., organic plus mineral A horizon) as the major biotic sink in a deciduous forest. Metabolically active members of Alphaproteobacteria and Actinobacteria were identified by taxonomic and functional gene biomarkers following stable isotope labeling (SIP) of microcosms with CH3Cl and CH3OH, added alone or together as the [13C]-isotopologue. Well-studied reference CH3Cl degraders, such as Methylobacterium extorquens CM4, were not involved in the sink activity of the studied soil. Nonetheless, only sequences of the cmuA chloromethane dehalogenase gene highly similar to those of known strains were detected, suggesting the relevance of horizontal gene transfer for CH3Cl degradation in forest soil. Further, CH3Cl consumption rate increased in the presence of CH3OH. Members of Alphaproteobacteria and Actinobacteria were also 13C-labeled upon [13C]-CH3OH amendment. These findings suggest that key bacterial CH3Cl degraders in forest soil benefit from CH3OH as an alternative substrate. For soil CH3Cl-utilizing methylotrophs, utilization of several one-carbon compounds may represent a competitive advantage over heterotrophs that cannot utilize one-carbon compounds.


Subject(s)
Actinobacteria/metabolism , Alphaproteobacteria/metabolism , Methanol/metabolism , Methyl Chloride/metabolism , Soil Microbiology , Actinobacteria/genetics , Alphaproteobacteria/genetics , Forests , Soil/chemistry
11.
Sci Total Environ ; 634: 1278-1287, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660879

ABSTRACT

Chloromethane (CH3Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH3Cl budget are approximate. The strength of the CH3Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH3Cl. Their ability to degrade CH3Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH3Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH3Cl at rates from 2.1 to 17 and 0.3 to 0.9µggdw-1day-1 for C. cooperi and D. filix-mas respectively, depending on CH3Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH3Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH3Cl, but produced it at rates ranging from 0.6 to 128µggdw-1day-1, with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH3Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH3Cl.

12.
J Environ Qual ; 47(2): 254-262, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29634809

ABSTRACT

Chloromethane (CHCl, methyl chloride) is the most abundant volatile halocarbon in the atmosphere and involved in stratospheric ozone depletion. The global CHCl budget, and especially the CHCl sink from microbial degradation in soil, still involves large uncertainties. These may potentially be resolved by a combination of stable isotope analysis and bacterial diversity studies. We determined the stable isotope fractionation of CHCl hydrogen and carbon and investigated bacterial diversity during CHCl degradation in three soils with different properties (forest, grassland, and agricultural soils) and at different temperatures and headspace mixing ratios of CHCl. The extent of chloromethane degradation decreased in the order forest > grassland > agricultural soil. Rates ranged from 0.7 to 2.5 µg g dry wt. d for forest soil, from 0.1 to 0.9 µg g dry wt. d for grassland soil, and from 0.1 to 0.4 µg g dry wt. d for agricultural soil and increased with increasing temperature and CHCl supplementation. The measured mean stable hydrogen enrichment factor of CHCl of -50 ± 13‰ was unaffected by temperature, mixing ratio, or soil type. In contrast, the stable carbon enrichment factor depended on CHCl degradation rates and ranged from -38 to -11‰. Bacterial community composition correlated with soil properties was independent from CHCl degradation or isotope enrichment. Nevertheless, increased abundance after CHCl incubation was observed in 21 bacterial operational taxonomical units (OTUs at the 97% 16S RNA sequence identity level). This suggests that some of these bacterial taxa, although not previously associated with CHCl degradation, may play a role in the microbial CHCl sink in soil.


Subject(s)
Methyl Chloride/chemistry , Soil Microbiology , Agriculture , Isotopes , Soil
13.
J Proteomics ; 179: 131-139, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29567292

ABSTRACT

Methylobacterium strains can use one-carbon compounds, such as methanol, for methylotrophic growth. In addition to methanol, a few strains also utilize dichloromethane, a major industrial chlorinated solvent pollutant. With a fully assembled and annotated genome, M. extorquens DM4 is the reference bacterium for aerobic dichloromethane degradation. The doublet N-terminal oriented proteomics (dN-TOP) strategy was applied to further improve its genome annotation and a differential proteomics approach was performed to compare M. extorquens DM4 grown either with methanol or dichloromethane as the sole source of carbon and energy. These approaches led to experimental confirmation of 259 hypothetical proteins, correction of 78 erroneous predicted start codons, discovery of 39 new proteins and annotation of 66 signal peptides, including essential enzymes involved in methylotrophic growth. SIGNIFICANCE: Dichloromethane (methylene chloride, CH2Cl2, DCM) is one of the most widely used industrial halogenated solvents and a potential carcinogen. Microbial rehabilitation of worldwide-contaminated sites involves DCM breakdown by bacteria that are able to grow using this pollutant as their sole carbon and energy source. The most-studied methylotrophic DCM degrader is Methylobacterium extorquens strain DM4. Proteomic studies of the Methylobacterium genus have been performed previously, but genome-wide investigation of N-termini of expressed proteins has not yet been performed. Differential quantitative proteomic analysis also opens new research perspectives to better monitor and understand bacterial growth with DCM.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial/drug effects , Methylene Chloride/pharmacology , Methylobacterium extorquens , Proteogenomics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Methylobacterium extorquens/genetics
14.
Trends Plant Sci ; 23(2): 95-99, 2018 02.
Article in English | MEDLINE | ID: mdl-29287770

ABSTRACT

Ecological, signaling, metabolic, and chemical processes in plant-microorganism systems and in plant-derived material may link the use of chlorinated pesticides in the environment with plant chloromethane emission. This neglected factor should be taken into account to assess global planetary budgets of chloromethane and impacts on atmospheric ozone depletion.


Subject(s)
Environment , Hydrocarbons, Chlorinated/metabolism , Methyl Chloride/metabolism , Pesticides/metabolism , Plants/metabolism , Biodegradation, Environmental , Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Plants/drug effects
15.
Sci Rep ; 7(1): 17589, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242530

ABSTRACT

Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere.


Subject(s)
Arabidopsis/metabolism , Methyl Chloride/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , Biodiversity , Gene Expression Regulation, Plant , Methyltransferases/genetics
16.
Curr Biol ; 27(20): R1127-R1129, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29065298

ABSTRACT

Engineering organisms for biotechnology applications requires knowledge of their essential genes and associated regulatory networks. A new study of methylotrophic metabolism in Methylobacterium reveals essentiality of the unregulated, off-pathway phosphoribulokinase gene and an unexpected key regulatory role for its product ribulose-1,5-bisphosphate.


Subject(s)
Carbon , Ribulose-Bisphosphate Carboxylase/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Ribulosephosphates
17.
Front Microbiol ; 8: 1600, 2017.
Article in English | MEDLINE | ID: mdl-28919881

ABSTRACT

Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.

18.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818885

ABSTRACT

The genomes of the aerobic methanotrophs "Methyloterricola oryzae" strain 73aT and Methylomagnum ishizawai strain 175 were sequenced. Both strains were isolated from rice plants. Methyloterricola oryzae strain 73aT represents the first isolate of rice paddy cluster I, and strain 175 is the second representative of the recently described genus Methylomagnum.

19.
Genome Announc ; 5(30)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28751386

ABSTRACT

The genome sequence of Hyphomicrobium sp. strain GJ21, isolated in the Netherlands from samples of environments contaminated with halogenated pollutants and capable of using dichloromethane as its sole carbon and energy source, was determined.

20.
PLoS One ; 12(3): e0173323, 2017.
Article in English | MEDLINE | ID: mdl-28319163

ABSTRACT

Hopanoids are sterol-like membrane lipids widely used as geochemical proxies for bacteria. Currently, the physiological role of hopanoids is not well understood, and this represents one of the major limitations in interpreting the significance of their presence in ancient or contemporary sediments. Previous analyses of mutants lacking hopanoids in a range of bacteria have revealed a range of phenotypes under normal growth conditions, but with most having at least an increased sensitivity to toxins and osmotic stress. We employed hopanoid-free strains of Methylobacterium extorquens DM4, uncovering severe growth defects relative to the wild-type under many tested conditions, including normal growth conditions without additional stressors. Mutants overproduce carotenoids-the other major isoprenoid product of this strain-and show an altered fatty acid profile, pronounced flocculation in liquid media, and lower growth yields than for the wild-type strain. The flocculation phenotype can be mitigated by addition of cellulase to the medium, suggesting a link between the function of hopanoids and the secretion of cellulose in M. extorquens DM4. On solid media, colonies of the hopanoid-free mutant strain were smaller than wild-type, and were more sensitive to osmotic or pH stress, as well as to a variety of toxins. The results for M. extorquens DM4 are consistent with the hypothesis that hopanoids are important for membrane fluidity and lipid packing, but also indicate that the specific physiological processes that require hopanoids vary across bacterial lineages. Our work provides further support to emerging observations that the role of hopanoids in membrane robustness and barrier function may be important across lineages, possibly mediated through an interaction with lipid A in the outer membrane.


Subject(s)
Carotenoids/biosynthesis , Membrane Lipids/physiology , Methylobacterium extorquens/physiology , Carotenoids/metabolism , Cell Membrane/metabolism , Cellulase/metabolism , Culture Media , Fatty Acids/metabolism , Flocculation , Hydrogen-Ion Concentration , Membrane Fluidity , Methylobacterium extorquens/genetics , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/metabolism , Mutation , Osmolar Concentration , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...