Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37894052

ABSTRACT

In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption maximum at 963-966 nm, which represents the furthest infrared-shift documented for such complexes containing bacteriochlorophyll a. A polyphasic approach to bacterial systematics was performed, comparing genomic, biochemical, and physiological properties. Strain 970 is related to Thiorhodovibrio winogradskyi DSM 6702T by 26.5, 81.9, and 98.0% similarity via dDDH, ANI, and 16S rRNA gene comparisons, respectively. The photosynthetic properties of strain 970 were unlike other Thiorhodovibrio spp., which contained typical LH absorbing characteristics of 800-870 nm, as well as a newly discovered absorption band at 908 nm. Strain 970 also had a different photosynthetic operon composition. Upon genomic comparisons with the original Thiorhodovibrio strains DSM 6702T and strain 06511, the latter was found to be divergent, with 25.3, 79.1, and 97.5% similarity via dDDH, ANI, and 16S rRNA gene homology to Trv. winogradskyi, respectively. Strain 06511 (=DSM 116345T) is thereby described as Thiorhodovibrio litoralis sp. nov., and the unique strain 970 (=DSM 111777T) as Thiorhodovibrio frisius sp. nov.

2.
mSystems ; 7(4): e0026422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35920548

ABSTRACT

The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell's regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the "plasmid paradox."


Subject(s)
Rhodobacteraceae , Plasmids/genetics , Rhodobacteraceae/genetics , Replicon/genetics , Gene Expression
3.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: mdl-35254236

ABSTRACT

The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.


Subject(s)
Dinoflagellida , Roseobacter , Dinoflagellida/genetics , Plasmids/genetics , Replicon , Rhodobacteraceae , Roseobacter/genetics
4.
Naturwissenschaften ; 108(4): 29, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34181110

ABSTRACT

Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.


Subject(s)
Chlorophyta , Eukaryota , Animals , Chlorophyta/genetics , DNA Barcoding, Taxonomic , Phylogeny , Ranidae
5.
Genes (Basel) ; 12(3)2021 03 09.
Article in English | MEDLINE | ID: mdl-33803228

ABSTRACT

Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity of associated heterotrophs. High-throughput Illumina sequencing, metagenomic assembly and binning allowed us to establish nearly complete high-quality draft genomes of all three cyanobacteria and to determine their phylogenetic position. The cyanosphere of the limnic isolates comprises up to 40 heterotrophic bacteria that likely coexisted for several decades, and it is dominated by Alphaproteobacteria and Bacteriodetes. The diagnostic marker protein RpoB ensured in combination with our novel taxonomic assessment via BLASTN-dependent text-mining a reliable classification of the metagenome assembled genomes (MAGs). The detection of one new family and more than a dozen genera of uncultivated heterotrophic bacteria illustrates that non-axenic cyanobacteria are treasure troves of hidden microbial diversity.


Subject(s)
Cyanobacteria/genetics , Metagenome/genetics , Genome, Bacterial/genetics , Metagenomics/methods , Microbiota/genetics , Phylogeny
6.
Syst Appl Microbiol ; 44(1): 126165, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33360413

ABSTRACT

The family Rhizobiaceae includes many genera of soil bacteria, often isolated for their association with plants. Herein, we investigate the genomic diversity of a group of Rhizobium species and unclassified strains isolated from atypical environments, including seawater, rock matrix or polluted soil. Based on whole-genome similarity and core genome phylogeny, we show that this group corresponds to the genus Pseudorhizobium. We thus reclassify Rhizobium halotolerans, R. marinum, R. flavum and R. endolithicum as P. halotolerans sp. nov., P. marinum comb. nov., P. flavum comb. nov. and P. endolithicum comb. nov., respectively, and show that P. pelagicum is a synonym of P. marinum. We also delineate a new chemolithoautotroph species, P. banfieldiae sp. nov., whose type strain is NT-26T (=DSM 106348T=CFBP 8663T). This genome-based classification was supported by a chemotaxonomic comparison, with increasing taxonomic resolution provided by fatty acid, protein and metabolic profiles. In addition, we used a phylogenetic approach to infer scenarios of duplication, horizontal transfer and loss for all genes in the Pseudorhizobium pangenome. We thus identify the key functions associated with the diversification of each species and higher clades, shedding light on the mechanisms of adaptation to their respective ecological niches. Respiratory proteins acquired at the origin of Pseudorhizobium were combined with clade-specific genes to enable different strategies for detoxification and nutrition in harsh, nutrient-poor environments.


Subject(s)
Extreme Environments , Phylogeny , Rhizobiaceae/classification , Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genome, Bacterial , Nucleic Acid Hybridization , Rhizobium , Sequence Analysis, DNA
7.
mSystems ; 5(6)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33361324

ABSTRACT

Photoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.

8.
Mol Phylogenet Evol ; 150: 106850, 2020 09.
Article in English | MEDLINE | ID: mdl-32438044

ABSTRACT

Gene duplication and horizontal gene transfer (HGT) are two important but different forces for adaptive genome evolution. In eukaryotic organisms, gene duplication is considered to play a more important evolutionary role than HGT. However, certain fungal lineages have developed highly efficient mechanisms that avoid the occurrence of duplicated gene sequences within their genomes. While these mechanisms likely originated as a defense against harmful mobile genetic elements, they come with an evolutionary cost. A prominent example for a genome defense system is the RIP mechanism of the ascomycete fungus Neurospora crassa, which efficiently prevents sequence duplication within the genome and functional redundancy of the subsequent paralogs. Despite this tight control, the fungus possesses two functionally redundant sterol C-5 desaturase enzymes, ERG-10a and ERG-10b, that catalyze the same step during ergosterol biosynthesis. In this study, we addressed this conundrum by phylogenetic analysis of the two proteins and supporting topology tests. We obtained evidence that a primary HGT of a sterol C-5 desaturase gene from Tremellales (an order of Basidiomycota) into a representative of the Pezizomycotina (a subphylum of Ascomycota) is the origin of the ERG-10b sequence. The reconstructed phylogenies suggest that this HGT event was followed by multiple HGT events among other members of the Pezizomycotina, thereby generating a diverse group with members in the four classes Sordariomycetes, Xylonomycetes, Eurotiomycetes and Dothideomycetes, which all harbor the second sterol C-5 desaturase or maintained in some cases only the ERG-10b version of this enzyme. These results furnish an example for a gene present in numerous ascomycetous fungi but primarily acquired by an ancestral HGT event from another fungal phylum. Furthermore, these data indicate that HGT represents one mechanism to generate functional redundancy in organisms with a strict avoidance of gene duplications.


Subject(s)
Ascomycota/genetics , Basidiomycota/genetics , Gene Transfer, Horizontal/genetics , Oxidoreductases/genetics , Ascomycota/enzymology , Basidiomycota/enzymology , Databases, Genetic , Evolution, Molecular , Oxidoreductases/classification , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics
9.
Proc Natl Acad Sci U S A ; 116(41): 20568-20573, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548387

ABSTRACT

Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment.


Subject(s)
Bacterial Proteins/genetics , Environment , Gene Transfer, Horizontal , Plasmids/genetics , Roseobacter/genetics , Evolution, Molecular , Genome, Bacterial , Geography , Phylogeny , Recombination, Genetic , Roseobacter/classification
10.
Genome Biol Evol ; 11(1): 270-294, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30590650

ABSTRACT

Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.


Subject(s)
Circadian Rhythm , Cyanobacteria/metabolism , Phylogeny , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , Genome, Bacterial
11.
Genome Biol Evol ; 10(9): 2310-2325, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30060189

ABSTRACT

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.


Subject(s)
Blastocystis/metabolism , Diatoms/metabolism , Glycolysis , Mitochondria/metabolism , Biological Evolution , Blastocystis/cytology , Blastocystis/enzymology , Blastocystis/genetics , Diatoms/cytology , Diatoms/enzymology , Diatoms/genetics , Energy Metabolism , Genome, Mitochondrial , Mitochondria/genetics , Symbiosis , Transformation, Genetic
12.
ISME J ; 12(8): 1994-2010, 2018 08.
Article in English | MEDLINE | ID: mdl-29795276

ABSTRACT

The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA-like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Photosynthesis , Plasmids/genetics , Rhodobacteraceae/genetics , DNA Replication , Genome, Bacterial , Multigene Family , Operon , Phototrophic Processes , Phylogeny , Plasmids/metabolism , Rhodobacteraceae/classification , Rhodobacteraceae/metabolism
13.
Genome Biol Evol ; 10(1): 359-369, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29325123

ABSTRACT

Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world's oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a "headful" type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.


Subject(s)
DNA, Bacterial/genetics , Gene Transfer, Horizontal , Rhodobacteraceae/genetics , Bacterial Proteins/genetics , Base Composition , Multigene Family , Oceans and Seas
14.
Genome Biol Evol ; 10(1): 1-13, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29202176

ABSTRACT

The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.


Subject(s)
Apicomplexa/genetics , Ciliophora/genetics , Dinoflagellida/genetics , Peroxisomes/genetics , Phylogeny , Apicomplexa/physiology , Biological Evolution , Ciliophora/physiology , Dinoflagellida/physiology , Metabolic Networks and Pathways , Peroxins/analysis , Peroxins/genetics , Peroxins/metabolism , Peroxisomes/metabolism , Transcriptome
15.
J Exp Zool B Mol Dev Evol ; 328(7): 685-696, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29059507

ABSTRACT

Non-visual opsins were discovered in the early 1990s. These genes play roles in circadian rhythm in mammals, seasonal reproduction in birds, light avoidance in amphibian larvae, and neural development in fish. However, the interpretation of such studies and the success of future work are compromised by the fact that non-visual opsin repertoires have not been properly characterized in any of these lineages. Here, we show that non-visual opsins from tetrapods and ray-finned fish are distributed among 18 monophyletic subfamilies. An amphibian sequence occurs in every subfamily, whereas mammalian orthologs occur in only seven. Species in the major ray-finned fish lineages, Holostei, Osteoglossomorpha, Otomorpha, Protacanthopterygii, and Neoteleostei, have large numbers of non-visual opsins (22-32 genes) as a result of gene duplication events including, but not limited to, the teleost genome duplication (TGD). In contrast to visual opsins, where lineage-specific duplication is common, the ray-finned fish non-visual opsin repertoire appears to have stabilized shortly after the TGD event and consequently even distantly related species have repertoires of similar size and composition. Most non-visual opsins have been named without the benefit of a phylogenetic perspective and, accordingly, major revisions are proposed.


Subject(s)
Biological Evolution , Fishes/genetics , Opsins/metabolism , Animals , Gene Expression Regulation/physiology , Opsins/genetics
16.
Front Microbiol ; 8: 1787, 2017.
Article in English | MEDLINE | ID: mdl-28983283

ABSTRACT

A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.

17.
Nat Ecol Evol ; 1(9): 1370-1378, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28890940

ABSTRACT

Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.

18.
ISME J ; 10(10): 2498-513, 2016 10.
Article in English | MEDLINE | ID: mdl-26953602

ABSTRACT

Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.


Subject(s)
Biofilms , Operon , Plasmids/genetics , Rhamnose/metabolism , Roseobacter/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Molecular Sequence Data , Phylogeny , Plasmids/metabolism , Replicon , Roseobacter/classification , Roseobacter/genetics , Roseobacter/isolation & purification
19.
Proc Natl Acad Sci U S A ; 112(7): E693-9, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646484

ABSTRACT

The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/physiology , Eukaryota , Bacteria/classification , Bacteria/genetics , Datasets as Topic , Genes, Bacterial , Phylogeny
20.
Genome Biol Evol ; 6(3): 666-84, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24572015

ABSTRACT

The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.


Subject(s)
Alveolata/genetics , Cryptophyta/genetics , Haptophyta/genetics , Plastids/genetics , Stramenopiles/genetics , Symbiosis , Alveolata/classification , Carotenoids/metabolism , Cryptophyta/classification , Dinoflagellida/classification , Dinoflagellida/genetics , Evolution, Molecular , Haptophyta/classification , Photosynthesis , Phylogeny , Sequence Analysis, DNA , Stramenopiles/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...