Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 45(3): 392-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24467435

ABSTRACT

Appaloosa horses are predisposed to equine recurrent uveitis (ERU), an immune-mediated disease characterized by recurring inflammation of the uveal tract in the eye, which is the leading cause of blindness in horses. Nine genetic markers from the ECA1 region responsible for the spotted coat color of Appaloosa horses, and 13 microsatellites spanning the equine major histocompatibility complex (ELA) on ECA20, were evaluated for association with ERU in a group of 53 Appaloosa ERU cases and 43 healthy Appaloosa controls. Three markers were significantly associated (corrected P-value <0.05): a SNP within intron 11 of the TRPM1 gene on ECA1, an ELA class I microsatellite located near the boundary of the ELA class III and class II regions and an ELA class II microsatellite located in intron 1 of the DRA gene. Association between these three genetic markers and the ERU phenotype was confirmed in a second population of 24 insidious ERU Appaloosa cases and 16 Appaloosa controls. The relative odds of being an ERU case for each allele of these three markers were estimated by fitting a logistic mixed model with each of the associated markers independently and with all three markers simultaneously. The risk model using these markers classified ~80% of ERU cases and 75% of controls in the second population as moderate or high risk, and low risk respectively. Future studies to refine the associations at ECA1 and ELA loci and identify functional variants could uncover alleles conferring susceptibility to ERU in Appaloosa horses.


Subject(s)
Horse Diseases/genetics , Uveitis/veterinary , Alleles , Animals , Genetic Markers , Horses , Microsatellite Repeats , Models, Genetic , Polymorphism, Single Nucleotide , Risk Factors , Uveitis/genetics
2.
Anim Genet ; 44(3): 267-75, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23051181

ABSTRACT

Genes within the major histocompatibility complex (MHC) encode proteins involved in innate and adaptive immune responses. Genetic variation in this region can influence the immune response of an individual animal to challenges from a variety of pathogens; however, a complete documentation of genetic variation in the MHC is lacking for most domestic animals, including horses. To provide additional genetic markers for study of the horse MHC, or ELA (equine lymphocyte antigen), we identified 37 polymorphic microsatellite repeats in ELA and used these variations separately and together with published SNPs to investigate linkage disequilibrium (LD) and haplotype structure in a sample of Thoroughbred horses. ELA SNPs alone detected little LD, but microsatellites, either separately or combined with SNPs, revealed substantially more LD. A subset of markers in very high LD across the breadth of ELA may be predictive of structural polymorphisms or linked epistases that are important drivers of haplotype structure in Thoroughbreds.


Subject(s)
Horses/genetics , Major Histocompatibility Complex/genetics , Microsatellite Repeats , Polymorphism, Single Nucleotide , Animals , Genetic Markers , Haplotypes , Linkage Disequilibrium , Sequence Analysis, DNA
3.
Anim Genet ; 41 Suppl 2: 186-95, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070294

ABSTRACT

The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication.


Subject(s)
Horses/genetics , Horses/immunology , Animals , DEAD-box RNA Helicases/genetics , Gene Duplication , Humans , Major Histocompatibility Complex , Mammals/genetics , Mammals/immunology
4.
Cytogenet Genome Res ; 122(1): 28-36, 2008.
Article in English | MEDLINE | ID: mdl-18931483

ABSTRACT

A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.


Subject(s)
Chromosome Mapping/veterinary , Horses/genetics , Animals , Chromosome Mapping/methods , Chromosomes, Artificial, Bacterial/genetics , Cytogenetics , Genetic Markers , In Situ Hybridization, Fluorescence/veterinary , Lod Score , Physical Chromosome Mapping/veterinary , Radiation Hybrid Mapping/veterinary , Species Specificity
5.
Cytogenet Genome Res ; 120(1-2): 164-72, 2008.
Article in English | MEDLINE | ID: mdl-18467843

ABSTRACT

A total of 207 BAC clones containing 155 loci were isolated and arranged into a map of linearly ordered overlapping clones over the proximal part of horse chromosome 21 (ECA21), which corresponds to the proximal half of the short arm of human chromosome 19 (HSA19p) and part of HSA5. The clones form two contigs - each corresponding to the respective human chromosomes - that are estimated to be separated by a gap of approximately 200 kb. Of the 155 markers present in the two contigs, 141 (33 genes and 108 STS) were generated and mapped in this study. The BACs provide a 4-5x coverage of the region and span an estimated length of approximately 3.3 Mb. The region presently contains one mapped marker per 22 kb on average, which represents a major improvement over the previous resolution of one marker per 380 kb obtained through the generation of a dense RH map for this segment. Dual color fluorescence in situ hybridization on metaphase and interphase chromosomes verified the relative order of some of the BACs and helped to orient them accurately in the contigs. Despite having similar gene order and content, the equine region covered by the contigs appears to be distinctly smaller than the corresponding region in human (3.3 Mb vs. 5.5-6 Mb) because the latter harbors a host of repetitive elements and gene families unique to humans/primates. Considering limited representation of the region in the latest version of the horse whole genome sequence EquCab2, the dense map developed in this study will prove useful for the assembly and annotation of the sequence data on ECA21 and will be instrumental in rapid search and isolation of candidate genes for traits mapped to this region.


Subject(s)
Contig Mapping/veterinary , Horses/genetics , Animals , Base Sequence , Chromosome Walking , Chromosomes, Artificial, Bacterial/genetics , DNA Primers/genetics , Evolution, Molecular , Humans , In Situ Hybridization, Fluorescence/veterinary , Polymerase Chain Reaction/veterinary , Sequence Tagged Sites , Species Specificity
6.
Cytogenet Genome Res ; 112(3-4): 227-34, 2006.
Article in English | MEDLINE | ID: mdl-16484777

ABSTRACT

A comparative approach that utilizes information from more densely mapped or sequenced genomes is a proven and efficient means to increase our knowledge of the structure of the horse genome. Human chromosome 2 (HSA2), the second largest human chromosome, comprising 243 Mb, and containing 1246 known genes, corresponds to all or parts of three equine chromosomes. This report describes the assignment of 140 new markers (78 genes and 62 microsatellites) to the equine radiation hybrid (RH) map, and the anchoring of 24 of these markers to horse chromosomes by FISH. The updated equine RH maps for ECA6p, ECA15, and ECA18 resulting from this work have one, two, and three RH linkage groups, respectively, per chromosome/chromosome-arm. These maps have a three-fold increase in the number of mapped markers compared to previous maps of these chromosomes, and an increase in the average marker density to one marker per 1.3 Mb. Comparative maps of ECA6p, ECA15, and ECA18 with human, chimpanzee, dog, mouse, rat, and chicken genomes reveal blocks of conserved synteny across mammals and vertebrates.


Subject(s)
Chromosome Mapping , Chromosomes, Human, Pair 2/genetics , Horses/genetics , Animals , Chromosomes, Artificial, Bacterial , Cricetinae/genetics , DNA Primers , Genetic Markers , Humans , In Situ Hybridization, Fluorescence , Metaphase , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...