Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(11): 112501, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363028

ABSTRACT

Using the fusion-evaporation reaction ^{96}Ru(^{58}Ni,p4n)^{149}Lu and the MARA vacuum-mode recoil separator, a new proton-emitting isotope ^{149}Lu has been identified. The measured decay Q value of 1920(20) keV is the highest measured for a ground-state proton decay, and it naturally leads to the shortest directly measured half-life of 450_{-100}^{+170} ns for a ground-state proton emitter. The decay rate is consistent with l_{p}=5 emission, suggesting a dominant πh_{11/2} component for the wave function of the proton-emitting state. Through nonadiabatic quasiparticle calculations it was concluded that ^{149}Lu is the most oblate deformed proton emitter observed to date.

2.
Proc Biol Sci ; 285(1870)2018 01 10.
Article in English | MEDLINE | ID: mdl-29298934

ABSTRACT

Multi-omic approaches promise to supply the power to detect genes underlying disease and fitness-related phenotypes. Optimal use of the resulting profusion of data requires detailed investigation of individual candidate genes, a challenging proposition. Here, we combine transcriptomic and genomic data with molecular modelling of candidate enzymes to characterize the evolutionary history and function of the serine protease cocoonase. Heliconius butterflies possess the unique ability to feed on pollen; recent work has identified cocoonase as a candidate gene in pollen digestion. Cocoonase was first described in moths, where it aids in eclosure from the cocoon and is present as a single copy gene. In heliconiine butterflies it is duplicated and highly expressed in the mouthparts of adults. At least six copies of cocoonase are present in Heliconius melpomene and copy number varies across H. melpomene sub-populations. Most cocoonase genes are under purifying selection, however branch-site analyses suggest cocoonase 3 genes may have evolved under episodic diversifying selection. Molecular modelling of cocoonase proteins and examination of their predicted structures revealed that the active site region of each type has a similar structure to trypsin, with the same predicted substrate specificity across types. Variation among heliconiine cocoonases instead lies in the outward-facing residues involved in solvent interaction. Thus, the neofunctionalization of cocoonase duplicates appears to have resulted from the need for these serine proteases to operate in diverse biochemical environments. We suggest that cocoonase may have played a buffering role in feeding during the diversification of Heliconius across the neotropics by enabling these butterflies to digest protein from a range of biochemical milieux.


Subject(s)
Butterflies/enzymology , Evolution, Molecular , Genes, Insect/genetics , Insect Proteins/genetics , Serine Proteases/genetics , Animals , Butterflies/genetics , Catalytic Domain , Insect Proteins/chemistry , Insect Proteins/metabolism , Models, Molecular , Phylogeny , Plant Nectar/metabolism , Pollen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Proteases/chemistry , Serine Proteases/metabolism , Substrate Specificity , Transcriptome
3.
Mol Biol Evol ; 18(12): 2270-9, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11719576

ABSTRACT

A comparative approach was taken for identifying amino acid substitutions that may be under positive Darwinian selection and are correlated with spectral shifts among orthologous and paralogous lepidopteran long wavelength-sensitive (LW) opsins. Four novel LW opsin fragments were isolated, cloned, and sequenced from eye-specific cDNAs from two butterflies, Vanessa cardui (Nymphalidae) and Precis coenia (Nymphalidae), and two moths, Spodoptera exigua (Noctuidae) and Galleria mellonella (Pyralidae). These opsins were sampled because they encode visual pigments having a naturally occurring range of lambda(max) values (510-530 nm), which in combination with previously characterized lepidopteran opsins, provide a complete range of known spectral sensitivities (510-575 nm) among lepidopteran LW opsins. Two recent opsin gene duplication events were found within the papilionid but not within the nymphalid butterfly families through neighbor-joining, maximum parsimony, and maximum likelihood phylogenetic analyses of 13 lepidopteran opsin sequences. An elevated rate of evolution was detected in the red-shifted Papilio Rh3 branch following gene duplication, because of an increase in the amino acid substitution rate in the transmembrane domain of the protein, a region that forms the chromophore-binding pocket of the visual pigment. A maximum likelihood approach was used to estimate omega, the ratio of nonsynonymous to synonymous substitutions per site. Branch-specific tests of selection (free-ratio) identified one branch with omega = 2.1044, but the small number of substitutions involved was not significantly different from the expected number of changes under the neutral expectation of omega = 1. Ancestral sequences were reconstructed with a high degree of certainty from these data. Reconstructed ancestral sequences revealed several instances of convergence to the same amino acid between butterfly and vertebrate cone pigments, and between independent branches of the butterfly opsin tree that are correlated with spectral shifts.


Subject(s)
Gene Duplication , Lepidoptera/chemistry , Rod Opsins/chemistry , Rod Opsins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Evolution, Molecular , Genes, Insect , Lepidoptera/genetics , Light , Likelihood Functions , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , Rod Opsins/classification , Selection, Genetic , Sequence Alignment
4.
Annu Rev Entomol ; 46: 471-510, 2001.
Article in English | MEDLINE | ID: mdl-11112177

ABSTRACT

We review the physiological, molecular, and neural mechanisms of insect color vision. Phylogenetic and molecular analyses reveal that the basic bauplan, UV-blue-green-trichromacy, appears to date back to the Devonian ancestor of all pterygote insects. There are variations on this theme, however. These concern the number of color receptor types, their differential expression across the retina, and their fine tuning along the wavelength scale. In a few cases (but not in many others), these differences can be linked to visual ecology. Other insects have virtually identical sets of color receptors despite strong differences in lifestyle. Instead of the adaptionism that has dominated visual ecology in the past, we propose that chance evolutionary processes, history, and constraints should be considered. In addition to phylogenetic analyses designed to explore these factors, we suggest quantifying variance between individuals and populations and using fitness measurements to test the adaptive value of traits identified in insect color vision systems.


Subject(s)
Biological Evolution , Color Perception/physiology , Insecta/physiology , Adaptation, Physiological/physiology , Animals , Humans , Insecta/classification , Photoreceptor Cells, Invertebrate , Phylogeny , Retinal Pigments/physiology
5.
J Mol Evol ; 51(2): 110-21, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10948267

ABSTRACT

It has been hypothesized that the UV-, blue-, and green-sensitive visual pigments of insects were present in the common ancestor of crustaceans and insects, whereas red-sensitive visual pigments evolved later as a result of convergent evolution. This hypothesis is examined with respect to the placement of six opsins from the swallowtail butterfly Papilio glaucus (PglRh1-6) in relationship to 46 other insect, crustacean, and chelicerate opsin sequences. All basal relationships established with maximum parsimony analysis except two are present in the distance and maximum likelihood analyses. In all analyses, the six P. glaucus opsins fall into three well-supported clades, comprised, respectively, of ultraviolet (UV), blue, and long-wavelength (LW) pigments, which appear to predate the radiation of the insects. Lepidopteran green- and red-sensitive visual pigments form a monophyletic clade, which lends support to the hypothesis from comparative physiological studies that red-sensitive visual pigments in insects have paralogous origins. Polymorphic amino acid sites (180, 197, 277, 285, 308), which are essential for generating the spectral diversity among the vertebrate red- and green-sensitive pigments are notably invariant in the Papilio red- and green-sensitive pigments. Other major tuning sites must be sought to explain the spectral diversification among these and other insect visual pigments.


Subject(s)
Butterflies/genetics , Phylogeny , Rod Opsins/genetics , 5' Untranslated Regions , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Evolution, Molecular , Genetic Variation , Introns , Molecular Sequence Data , RNA, Messenger , Sequence Homology, Amino Acid
6.
Gene ; 230(1): 101-9, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10196479

ABSTRACT

Full-length cDNA clones encoding the PglRh3 opsin from the tiger swallowtail butterfly Papilio glaucus were isolated from cDNA synthesized from adult head tissue total RNA. This cDNA consists of 1679 nucleotides and contains a single open reading frame predicted to be 379 amino acids in length. PCR amplification of genomic DNA with primers spanning the coding region yielded a single 2760bp fragment which was sequenced. The PglRh3 gene has nine exons and eight introns, four of which are in unique locations relative to the positions of introns in other known insect opsin sequences. Phylogenetic analyses of amino acid and nucleotide sequence data places PglRh3 within a clade of insect visual pigments thought to be sensitive to long wavelengths of light. The genomic structure of PglRh3 is the first characterized from a member of this opsin clade. Three PglRh3 intron positions are shared with Drosophila Rh1, and one of these is also shared with Drosophila Rh2. By contrast, none of the known intron locations in a clade of anciently diverged ultraviolet- and blue-sensitive visual pigments are shared by P. glaucus PglRh3, Drosophila Rh1 or Rh2. The placement of introns within opsin genes therefore independently supports the clustering of a putatively long-wavelength-sensitive clade with a clade of blue-green-sensitive visual pigments.


Subject(s)
Butterflies/genetics , RNA Splicing/genetics , Rod Opsins/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Conserved Sequence , Exons , Insect Proteins/chemistry , Insect Proteins/genetics , Introns , Molecular Sequence Data , Photoreceptor Cells, Invertebrate , Phylogeny , Rod Opsins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL