Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(12): e0143068, 2015.
Article in English | MEDLINE | ID: mdl-26630491

ABSTRACT

Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride.


Subject(s)
Aquaporin 5/metabolism , Dental Caries/metabolism , Fluorides/metabolism , Adolescent , Adult , Animals , Aquaporin 5/genetics , Cell Line, Tumor , Child , Child, Preschool , Dental Caries/genetics , Female , Genetic Markers/genetics , Genotype , Humans , Male , Mammary Glands, Human/metabolism , Middle Aged , Polymorphism, Single Nucleotide/genetics , Rats , Rats, Wistar , Saliva/metabolism , Young Adult
2.
BMC Med Genet ; 15: 81, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25023176

ABSTRACT

BACKGROUND: Congenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans. METHODS: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice. RESULTS: Two families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on sex and dental caries experience. CONCLUSIONS: The common etiology of dental caries and hearing impairment provides a venue to assist in the identification of individuals at risk to either condition and provides options for the development of new caries prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.


Subject(s)
Dental Caries/genetics , Hearing Loss, Sensorineural/pathology , Receptors, Estrogen/genetics , Tooth Demineralization/genetics , Adolescent , Adult , Animals , Cell Line, Tumor , Child , Child, Preschool , Chromosomes, Human, Pair 14 , Dental Enamel/growth & development , Female , Genetic Association Studies , Hearing Loss, Sensorineural/genetics , Humans , Linkage Disequilibrium , Male , Mice , Pedigree , Polymorphism, Single Nucleotide , Receptors, Estrogen/physiology , Young Adult
3.
Hum Genet ; 132(9): 1015-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23657505

ABSTRACT

Caries is the most common chronic, multifactorial disease in the world today; and little is still known about the genetic factors influencing susceptibility. Our previous genome-wide linkage scan has identified five loci related to caries susceptibility: 5q13.3, 13q31.1, 14q11.2, 14q 24.3, and Xq27. In the present study, we fine mapped the 14q11.2 locus to identify genetic contributors to caries susceptibility. Four hundred seventy-seven subjects from 72 pedigrees with similar cultural and behavioral habits and limited access to dental care living in the Philippines were studied. An additional 387 DNA samples from unrelated individuals were used to determine allele frequencies. For replication purposes, a total of 1,446 independent subjects from four different populations were analyzed based on their caries experience (low versus high). Forty-eight markers in 14q11.2 were genotyped using TaqMan chemistry. Transmission disequilibrium test was used to detect over transmission of alleles in the Filipino families, and Chi-square, Fisher's exact and logistic regression were used to test for association between low caries experience and variant alleles in the replication data sets. We finally assessed the mRNA expression of TRAV4 in the saliva of 143 study subjects. In the Filipino families, statistically significant associations were found between low caries experience and markers in TRAV4. We were able to replicate these results in the populations studied that were characteristically from underserved areas. Direct sequencing of 22 subjects carrying the associated alleles detects one missense mutation (Y30R) that is predicted to be probably damaging. Finally, we observed higher expression in children and teenagers with low caries experience, correlating with specific alleles in TRAV4. Our results suggest that TRAV4 may have a role in protecting against caries.


Subject(s)
Chromosomes, Human, Pair 14/genetics , Dental Caries/epidemiology , Dental Caries/genetics , Genes, T-Cell Receptor alpha/genetics , Genetic Predisposition to Disease/genetics , Base Sequence , DNA Primers/genetics , Gene Frequency , Genetic Association Studies , Genetic Loci/genetics , Humans , Inheritance Patterns/genetics , Linkage Disequilibrium , Logistic Models , Molecular Sequence Data , Mutation, Missense/genetics , Philippines/epidemiology , Saliva/metabolism , Sequence Analysis, DNA
4.
PLoS One ; 7(9): e45022, 2012.
Article in English | MEDLINE | ID: mdl-23028741

ABSTRACT

There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes may contribute to caries. For the present study, we used DNA samples collected from 1,831 individuals from various population data sets. Single nucleotide polymorphism markers were genotyped in selected genes (ameloblastin, amelogenin, enamelin, tuftelin, and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Associations with caries experience can be detected but they are not necessarily replicated in all population groups and the most expressive results was for a marker in AMELX (p=0.0007). To help interpret these results, we evaluated if enamel microhardness changes under simulated cariogenic challenges are associated with genetic variations in these same genes. After creating an artificial caries lesion, associations could be seen between genetic variation in TUFT1 (p=0.006) and TUIP11 (p=0.0006) with enamel microhardness. Our results suggest that the influence of genetic variation of enamel formation genes may influence the dynamic interactions between the enamel surface and the oral cavity.


Subject(s)
Amelogenesis/genetics , Dental Caries/genetics , Dental Enamel/metabolism , Dental Enamel/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA Mutational Analysis , Demography , Family , Female , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Hardness , Humans , Infant , Male , Middle Aged , Philippines , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL