Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37401145

ABSTRACT

Cutaneous leishmaniasis is an infectious disease that may lead to a single or multiple disseminated cutaneous lesions. The mechanisms involved in Leishmania dissemination to different areas of the skin and the internal organs remain poorly understood. Evidence shows that Very Late Antigen-4 (VLA-4)-dependent phagocyte adhesion is impaired by Leishmania infection, which may be related to the mechanisms of parasite dissemination. We investigated factors potentially associated with decreased VLA-4-mediated adhesion in Leishmania-infected macrophages, including lipid raft-mediated VLA-4 mobilization along the cellular membrane, integrin cluster formation at the cell base (adhesion site), and focal adhesion complex assembly. Phagocytes treated with Methyl-ß-Cyclodextrin (MßCD) demonstrated reduced adhesion, similarly to Leishmania amazonensis-infected J774 cells. Infected and MßCD-treated macrophages presented decreased VLA-4 mobilization to the adhesion plane, as well as reduced integrin clustering. Leishmania amazonensis-infected cells exhibited talin depletion, as well as a decreased mobilization of adhesion complex proteins, such as talin and viculin, which were associated with lower VLA-4 concentrations at the adhesion site and limited cell-spreading. Our results suggest that Leishmania infection may modulate the firm adhesion phase of the cell-spreading process, which could contribute to the bloodstream dissemination of infected cells.


Subject(s)
Leishmania mexicana , Leishmania , Leishmaniasis, Cutaneous , Humans , Integrin alpha4beta1 , Talin , Leishmaniasis, Cutaneous/parasitology , Cluster Analysis
2.
Pathogens ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959592

ABSTRACT

The spleen is involved in visceral leishmaniasis immunopathogenesis, and presents alterations in white-pulp microenvironments that are associated with an increased susceptibility to coinfections and patient death. Plasmacytosis in splenic red pulp (RP) is one observed alteration, but the specificity of antibody-secreting cells and the distribution of them has not yet been evaluated. We biotinylated soluble L. infantum membrane antigens (bSLMA) used as probes in modified immunohistochemistry, and detected the presence of anti-L. infantum antibody-secreting cells. Were used spleens from eight dogs from the endemic area for canine visceral leishmaniasis (CanL), and three healthier controls. The spleen sections were cryopreserved, and we performed modified immunohistochemistry. The ratio of plasma cells which were reactive to bSLMA (Anti-Leish-PC) in the spleen RP and periarteriolar lymphatic sheath (PALS) were calculated. Dogs with CanL present hyperglobulinemia and more plasma cells in their RP than the controls. Furthermore, dogs with CanL presented a lower proportion of Anti-Leish-PC in their RP than in PALS. Likewise, dysproteinemia was related to RP and PALS plasmacytosis, and a more severe clinical profile.

3.
Front Immunol ; 12: 716314, 2021.
Article in English | MEDLINE | ID: mdl-34804009

ABSTRACT

Structural changes in the spleen have been reported in several infectious diseases. In visceral leishmaniasis (VL), a severe parasitic disease caused by Leishmania spp., the loss of white pulp accompanies a severe clinical presentation. Hamster model reproduces aspects of human VL progression. In the early stages, a transcriptomic signature of leukocyte recruitment was associated with white pulp hyperplasia. Subsequently, impaired leukocyte chemotaxis with loss of T lymphocytes in the periarteriolar lymphoid sheath occurred. This differential gene expression was subsequently corroborated by transcriptomic profiling of spleens in severe human VL. At the latest stage, spleen disorganization was associated with increasing clinical signs of VL. White pulp disruption was accompanied by decreased DLK1 expression. The expression of CXCL13, CCR5, CCL19, CCR6, CCR7 and LTA decreased, likely regulated by CDKN2A overexpression. Our findings enlighten a pathway implying cell cycle arrest and decreased gene expression involved in spleen organization.


Subject(s)
Cell Cycle Checkpoints/genetics , Chemotaxis, Leukocyte/genetics , Leishmaniasis, Visceral/immunology , Spleen/immunology , Spleen/parasitology , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cricetinae , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Gene Expression Profiling , Humans , Hyperplasia/pathology , Leishmaniasis, Visceral/pathology , Leukocytes/parasitology , Leukocytes/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Spleen/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...