Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(40): 46747-46755, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782693

ABSTRACT

Point-of-care (POC) devices can provide inexpensive, practical, and expedited solutions for applications ranging from biomedicine to environmental monitoring. This work reports on the development of low-cost microfluidic substrates for POC systems suitable for analytical assays, while also satisfying the need for social and environmentally conscious practices regarding circular economy, waste reduction, and the use of local resources. Thus, an innovative greener process to extract cellulose from plants including abaca, cotton, kozo, linen, and sisal, originating from different places around the world, is developed, and then the corresponding paper substrates are obtained to serve as platforms for POC assays. Hydrophobic wax is used to delineate channels that are able to guide solutions into chambers where the colorimetric assay for total cholesterol quantification is carried out as a proof of concept. Morphological and physicochemical analyses are performed, including the evaluation of fiber diameter, shape and density, and mechanical and thermal properties, together with peel adhesion of the printed wax channels. Contact angle and capillary flow tests ascertain the suitability of the substrates for liquid assays and overall viability as low-cost, sustainable microfluidic substrates for POC applications.


Subject(s)
Microfluidic Analytical Techniques , Paper , Colorimetry , Rainforest , Cellulose , Biological Assay , Point-of-Care Systems , Lab-On-A-Chip Devices
2.
Int J Biol Macromol ; 242(Pt 3): 125049, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37263322

ABSTRACT

The continuous rising of infections caused by multidrug-resistant pathogens is becoming a global healthcare concern. Developing new bio-based materials with unique chemical and structural features that allow efficient interaction with bacteria is thus important for fighting this phenomenon. To address this issue, we report an antimicrobial biomaterial that results from clustering local facial amphiphilicity from amino-modified cellulose on silk fibroin ß-sheets, by simply blending the two components through casting technology. A simple but effective method for creating a membrane that is antibacterial and non-cytotoxic. Amino-modified cellulose nanocrystals (CNC-NH2) were mixed with proteinaceous silk fibroin (SF) which resulted in a material with improved crystallinity, higher ß-sheet content, and exposed amino-groups at its surface features, proven by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), that does not occur when the components are individually assembled. The resulting material possesses important antibacterial activity inducing >3 CFU log10 reduction of Escherichia coli and Staphylococcus epidermidis, while the pristine membranes show no antibacterial effect. The chemical interactions occurring between SF and CNC-NH2 during casting, exposing the amino moieties at the surface of the material, are proposed as the main reason for this antimicrobial activity. Importantly, the membranes are non-cytotoxic, showing their potential to be used as a new bioinspired material with intrinsic antibacterial activity for biomedical applications. Those may include coatings for medical devices for the control of healthcare-associated infections, with no need for including external antimicrobial agents in the material.


Subject(s)
Fibroins , Fibroins/chemistry , Protein Conformation, beta-Strand , Biocompatible Materials/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose , Silk/chemistry
3.
Biomacromolecules ; 24(3): 1121-1130, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36754364

ABSTRACT

Silk fibroin (SF) is a biocompatible natural protein with excellent mechanical characteristics. SF-based biomaterials can be structured using a number of techniques, allowing the tuning of materials for specific biomedical applications. In this study, SF films, porous membranes, and electrospun membranes were produced using solvent-casting, salt-leaching, and electrospinning methodologies, respectively. SF-based materials were subjected to physicochemical and biological characterizations to determine their suitability for tissue regeneration applications. Mechanical analysis showed stress-strain curves of brittle materials in films and porous membranes, while electrospun membranes featured stress-strain curves typical of ductile materials. All samples showed similar chemical composition, melting transition, hydrophobic behavior, and low cytotoxicity levels, regardless of their architecture. Finally, all of the SF-based materials promote the proliferation of human umbilical vein endothelial cells (HUVECs). These findings demonstrate the different relationship between HUVEC behavior and the SF sample's topography, which can be taken advantage of for the design of vascular implants.


Subject(s)
Fibroins , Humans , Fibroins/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Human Umbilical Vein Endothelial Cells , Porosity , Silk/chemistry , Tissue Engineering
4.
Front Bioeng Biotechnol ; 10: 1044667, 2022.
Article in English | MEDLINE | ID: mdl-36338140

ABSTRACT

Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive ß-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.

5.
ACS Appl Mater Interfaces ; 13(15): 18065-18076, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33843194

ABSTRACT

Portable analytical systems are increasingly required for clinical analysis or environmental monitoring, among others, being materials with tailored physicochemical properties among the main needs for successful functional implementation. This article describes the processing of fluorinated poly(vinylidene-co-trifluorethylene), P(VDF-TrFE), membranes with tailored morphological and physicochemical properties to be used as microfluidic substrates for portable analytical systems, commonly called point-of-care systems in the medical field. The morphology of the developed membranes includes spherulitic, porous, randomly oriented, and oriented fibers. Furthermore, the processed hydrophobic P(VDF-TrFE) membranes were post-treated by oxygen plasma to make them superhydrophilic. The influence of morphology and plasma treatment on the physicochemical properties and capillary flow rates was evaluated. Microfluidic systems were then designed and printed by wax printing for the colorimetric quantification of glucose. The systems comprise eight reaction chambers, each glucose concentration (25, 50, 75, and 100 mg dL-1) being measured in two reaction chambers separately and at the same time. The results demonstrate the suitability of the developed microfluidic substrates based on their tailorable morphology, improved capillary flow rate, wax print quality, homogeneous generation of colorimetric reaction, and excellent mechanical properties. Finally, the possibility of being reused, along with their electroactive properties, can lead to a new generation of microfluidic substrates based on fluorinated membranes.


Subject(s)
Biological Assay/methods , Colorimetry/methods , Halogenation , Hydrocarbons, Fluorinated/chemistry , Membranes, Artificial , Vinyl Compounds/chemistry , Lab-On-A-Chip Devices , Mechanical Phenomena
6.
ACS Appl Mater Interfaces ; 12(1): 60-69, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31808332

ABSTRACT

Novel microfluidic substrates based on electrospun poly(l-lactic acid) (PLLA) membranes were developed to increase the limited range of commercially available paper substrates, commonly used for the fabrication of microfluidic paper-based analytical devices. PLLA's advantageous properties include biodegradability, biocompatibility, ease of being processed in various tailored morphologies, and cost effectiveness, among others. Oriented and nonoriented electrospun PLLA membranes were fabricated using electrospinning and the influence of fiber orientation, addition of hydrophilic additives, and plasma treatments on the morphology, physicochemical properties, and capillary flow rates were evaluated and compared with the commercial Whatman paper. In addition, a proof-of-concept application based on the colorimetric detection of glucose in printed PLLA and paper-based microfluidic systems was also performed. The results show the potential of PLLA substrates for the fabrication of portable, disposable, eco-friendly, and cost-effective microfluidic systems with controllable properties that can be tailored according to specific biotechnological application requirements, being a suitable alternative to conventional paper-based substrates.

7.
Nanoscale Adv ; 1(6): 2284-2292, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-36131973

ABSTRACT

Environmental issues promote the development of sensors based on natural polymers which are becoming an area of increasing interest. Piezoresistive sensors based on silk fibroin with carbon nanotubes (CNTs) as fillers were produced by solvent-casting in order to tune their electrical conductivity and electromechanical responses. It is shown that the carbonaceous fillers are well dispersed in the polymer matrix and the thermal and mechanical properties are independent of the CNT content. On the other hand, the inclusion of CNTs reduces the ß-sheet content of silk fibroin and the electrical properties of the composite strongly depend on the filler content, the percolation threshold being around 1 wt% CNTs. The piezoresistive response demonstrates good reproducibility during cyclic loading without hysteresis with a piezoresistive sensitivity of ∼4 MPa-1, regardless of the CNT content. Overall, the results confirm that polymer composites based on natural polymers exhibit excellent piezoresistive responses, also demonstrated by the implementation and testing of a pressure sensor with the corresponding readout electronics. Thus, it is shown that natural polymers such as silk fibroin will allow the development of a new generation of multifunctional force and deformation sensors.

8.
ACS Appl Mater Interfaces ; 10(6): 5385-5394, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29369609

ABSTRACT

Battery separators based on silk fibroin (SF) have been prepared aiming at improving the environmental issues of lithium-ion batteries. SF materials with three different morphologies were produced: membrane films (SF-F), sponges prepared by lyophilization (SF-L), and electrospun membranes (SF-E). The latter materials presented a suitable porous three-dimensional microstructure and were soaked with a 1 M LiPF6 electrolyte. The ionic conductivities for SF-L and SF-E were 1.00 and 0.32 mS cm-1 at 20 °C, respectively. A correlation between the fraction of ß-sheet conformations and the ionic conductivity was observed. The electrochemical performance of the SF-based materials was evaluated by incorporating them in cathodic half-cells with C-LiFePO4. The discharge capacities of SF-L and SF-E were 126 and 108 mA h g-1, respectively, at the C/2-rate and 99 and 54 mA h g-1, respectively, at the 2C-rate. Furthermore, the capacity retention and capacity fade of the SF-L membrane after 50 cycles at the 2C-rate were 72 and 5%, respectively. These electrochemical results show that a high percentage of ß-sheet conformations were of prime importance to guarantee excellent cycling performance. This work demonstrates that SF-based membranes are appropriate separators for the production of environmentally friendlier lithium-ion batteries.


Subject(s)
Fibroins/chemistry , Electric Power Supplies , Electrodes , Ions , Lithium
SELECTION OF CITATIONS
SEARCH DETAIL
...