Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Struct Dyn ; 11(2): 024101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482073

ABSTRACT

Hydrodynamic phonon transport phenomena, like second sound, have been observed in liquid helium more than 50 years ago. More recently second sound has been observed in graphite at over 200 K using transient thermal grating (TG) techniques. In this work, we explore signatures of phonon hydrodynamic transport and second sound oscillations in ultrafast electron diffuse scattering patterns, which can provide time, momentum, and branch resolved information on the state-of-excitation of the phonon system beyond that available through TG experiments. We use the density functional theory and solve the Boltzmann transport equation to determine time-resolved non-equilibrium phonon populations and model phonon transport in graphite. This model also provides the information necessary to calculate the time evolution of one-phonon structure factors and diffuse scattering patterns during thermal transport covering ballistic, diffusive, and hydrodynamic regimes where the effect of a second sound oscillation on the phonon distribution is observed. Direct measurements of how the phonon distribution varies in time and space in various thermal transport regimes should yield new insights into the fundamental physics of the underlying processes.

2.
Nano Lett ; 22(12): 4718-4724, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35671172

ABSTRACT

Transition-metal dichalcogenide monolayers and heterostructures are highly tunable material systems that provide excellent models for physical phenomena at the two-dimensional (2D) limit. While most studies to date have focused on electrons and electron-hole pairs, phonons also play essential roles. Here, we apply ultrafast electron diffraction and diffuse scattering to directly quantify, with time and momentum resolution, electron-phonon coupling (EPC) in monolayer molybdenum disulfide and phonon transport from the monolayer to a silicon nitride substrate. Optically generated hot carriers result in a profoundly anisotropic distribution of phonons in the monolayer within ∼5 ps. A quantitative comparison with ab initio ultrafast dynamics simulations reveals the essential role of dielectric screening in weakening EPC. Thermal transport from the monolayer to the substrate occurs with the phonon system far from equilibrium. While screening in 2D is known to strongly affect equilibrium properties, our findings extend this understanding to the dynamic regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...