Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(4): eadj5569, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277447

ABSTRACT

Marine heat waves affect ocean ecosystems and are expected to become more frequent and intense. Earth system models' ability to reproduce extreme ocean temperature statistics has not been tested quantitatively, making the reliability of their future projections of marine heat waves uncertain. We demonstrate that annual maxima of detrended anomalies in daily mean sea surface temperatures (SSTs) over 39 years of global satellite observations are described excellently by the generalized extreme value distribution. If models can reproduce the observed distribution of SST extremes, this increases confidence in their marine heat wave projections. 14 CMIP6 models' historical realizations reproduce the satellite-based distribution and its parameters' spatial patterns. We find that maximum ocean temperatures will become warmer (by 1.07° ± 0.17°C under 2°C warming and 2.04° ± 0.18°C under 3.2°C warming). These changes are mainly due to mean SST increases, slightly reinforced by SST seasonality increases. Our study quantifies ocean temperature extremes and gives confidence to model projections of marine heat waves.

2.
PLoS Comput Biol ; 18(1): e1009733, 2022 01.
Article in English | MEDLINE | ID: mdl-35030163

ABSTRACT

The rates of cell growth, division, and carbon loss of microbial populations are key parameters for understanding how organisms interact with their environment and how they contribute to the carbon cycle. However, the invasive nature of current analytical methods has hindered efforts to reliably quantify these parameters. In recent years, size-structured matrix population models (MPMs) have gained popularity for estimating division rates of microbial populations by mechanistically describing changes in microbial cell size distributions over time. Motivated by the mechanistic structure of these models, we employ a Bayesian approach to extend size-structured MPMs to capture additional biological processes describing the dynamics of a marine phytoplankton population over the day-night cycle. Our Bayesian framework is able to take prior scientific knowledge into account and generate biologically interpretable results. Using data from an exponentially growing laboratory culture of the cyanobacterium Prochlorococcus, we isolate respiratory and exudative carbon losses as critical parameters for the modeling of their population dynamics. The results suggest that this modeling framework can provide deeper insights into microbial population dynamics provided by size distribution time-series data.


Subject(s)
Bayes Theorem , Computational Biology/methods , Models, Biological , Phytoplankton/physiology , Population Dynamics , Time Factors
3.
Reg Environ Change ; 21(2): 35, 2021.
Article in English | MEDLINE | ID: mdl-34720738

ABSTRACT

Small-scale fisheries are critically important for livelihoods around the world, particularly in tropical regions. However, climate variability and anthropogenic climate change may seriously impact small-scale fisheries by altering the abundance and distribution of target species. Social relationships between fishery users, such as fish traders, can determine how each individual responds and is affected by changes in fisheries. These informal cooperative and competitive relationships provide access, support, and incentives for fishing and affect the distribution of benefits. Yet, individuals' actions and impacts on individuals are often the primary focus of the economic analyses informing small-scale fisheries' formal management. This focus dismisses relevant social relationships. We argue that this leads to a disconnect between reality and its model representation used in formal management, which may reduce formal fisheries management's efficiency and efficacy and potentially trigger adverse consequences. Here, we examine this argument by comparing the predictions of a simple bioeconomic fishery model with those of a social-ecological model that incorporates the dynamics of cooperative relationships between fish traders. We illustrate model outcomes using an empirical case study in the Mexican Humboldt squid fishery. We find that (1) the social-ecological model with relationship dynamics substantially improves accuracy in predicting observed fishery variables to the simple bioeconomic model. (2) Income inequality outcomes are associated with changes in cooperative trade relationships. When environmental temperature is included in the model as a driver of species production dynamics, we find that climate-driven temperature variability drives a decline in catch that, in turn, reduce fishers' income. We observe an offset of this loss in income by including cooperative relationships between fish traders (oligopoly) in the model. These relationships break down following species distribution changes and result in an increase in prices fishers receive. Finally, (3) our social-ecological model simulations show that the current fishery development program, which seeks to increase fishers' income through an increase in domestic market demand, is supported by predictions from the simple bioeconomic model, may increase income inequality between fishers and traders. Our findings highlight the real and urgent need to re-think fisheries management models in the context of small-scale fisheries and climate change worldwide to encompass social relationship dynamics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s10113-021-01747-5).

4.
Nat Clim Chang ; 11(11): 973-981, 2021.
Article in English | MEDLINE | ID: mdl-34745348

ABSTRACT

Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.

5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34312236

ABSTRACT

Concerns over overexploitation have fueled an ongoing debate on the current state and future prospects of global capture fisheries, associated threats to marine biodiversity, and declining yields available for human consumption. Management reforms have aimed to reduce fishing pressure and recover depleted stocks to biomass and exploitation rates that allow for maximum sustainable yield. Recent analyses suggest that scientifically assessed stocks, contributing over half of global marine fish catch, have, on average, reached or even exceeded these targets, suggesting a fundamental shift in the effectiveness of fisheries governance. However, such conclusions are based on calculations requiring specific choices to average over high interstock variability to derive a global trend. Here we evaluate the robustness of these conclusions by examining the distribution of recovery rates across individual stocks and by applying a diversity of plausible averaging techniques. We show that different methods produce markedly divergent trajectories of global fisheries status, with 4 of 10 methods suggesting that recovery has not yet been achieved, with up to 48% of individual stocks remaining below biomass targets and 40% exploited above sustainable rates. Furthermore, recent rates of recovery are only marginally different from zero, with up to 46% of individual stocks trending downward in biomass and 29% of stocks trending upward in exploitation rate. These results caution against overoptimistic assessments of fisheries writ large and support a precautionary management approach to ensure full rebuilding of depleted fisheries worldwide.


Subject(s)
Conservation of Natural Resources , Ecosystem , Fisheries/organization & administration , Fishes/physiology , Animals , Biomass , Fisheries/legislation & jurisprudence , Humans , Internationality , Models, Biological , Oceans and Seas , Population Dynamics
7.
Nat Commun ; 11(1): 5636, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159071

ABSTRACT

Marine ecosystem models predict a decline in fish production with anthropogenic ocean warming, but how fish production equilibrates to warming on longer timescales is unclear. We report a positive nonlinear correlation between ocean temperature and pelagic fish production during the extreme global warmth of the Early Paleogene Period (62-46 million years ago [Ma]). Using data-constrained modeling, we find that temperature-driven increases in trophic transfer efficiency (the fraction of production passed up trophic levels) and primary production can account for the observed increase in fish production, while changes in predator-prey interactions cannot. These data provide new insight into upper-trophic-level processes constrained from the geological record, suggesting that long-term warming may support more productive food webs in subtropical pelagic ecosystems.


Subject(s)
Ecosystem , Fishes/growth & development , Animals , Fishes/physiology , Food Chain , Global Warming , Oceans and Seas , Seawater/analysis
8.
Nature ; 580(7801): 39-51, 2020 04.
Article in English | MEDLINE | ID: mdl-32238939

ABSTRACT

Sustainable Development Goal 14 of the United Nations aims to "conserve and sustainably use the oceans, seas and marine resources for sustainable development". Achieving this goal will require rebuilding the marine life-support systems that deliver the many benefits that society receives from a healthy ocean. Here we document the recovery of marine populations, habitats and ecosystems following past conservation interventions. Recovery rates across studies suggest that substantial recovery of the abundance, structure and function of marine life could be achieved by 2050, if major pressures-including climate change-are mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an ethical obligation and a smart economic objective to achieve a sustainable future.


Subject(s)
Ecosystem , Endangered Species/statistics & numerical data , Environmental Restoration and Remediation/trends , Marine Biology/trends , Animals , Extinction, Biological , Fishes , Global Warming/prevention & control , Human Activities , Humans
9.
Proc Natl Acad Sci U S A ; 116(32): 15985-15990, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332004

ABSTRACT

Current and future prospects for successfully rebuilding global fisheries remain debated due to uncertain stock status, variable management success, and disruptive environmental change. While scientists routinely account for some of this uncertainty in population models, the mechanisms by which this translates into decision-making and policy are problematic and can lead to unintentional overexploitation. Here, we explicitly track the role of measurement uncertainty and environmental variation in the decision-making process for setting catch quotas. Analyzing 109 well-sampled stocks from all oceans, we show that current practices may attain 55% recovery on average, while richer decision methods borrowed from robotics yield 85% recovery of global stocks by midcentury, higher economic returns, and greater robustness to environmental surprises. These results challenge the consensus that global fisheries can be rebuilt by existing approaches alone, while also underscoring that rebuilding stocks may still be achieved by improved decision-making tools that optimally manage this uncertainty.


Subject(s)
Fisheries , Internationality , Uncertainty , Animals , Biomass , Fishes/physiology , Species Specificity
10.
Science ; 359(6380): 1139-1143, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29590043

ABSTRACT

Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower-trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.


Subject(s)
Carbon Cycle , Climate Change , Fisheries , Animals , Hot Temperature , Ice Cover , Oceans and Seas , Wind
11.
Front Microbiol ; 8: 1496, 2017.
Article in English | MEDLINE | ID: mdl-28848514

ABSTRACT

Synechococcus are ubiquitous and cosmopolitan cyanobacteria that play important roles in global productivity and biogeochemical cycles. This study investigated the fine scale microdiversity, seasonal patterns, and spatial distributions of Synechococcus in estuarine waters of Little Sippewissett salt marsh (LSM) on Cape Cod, MA. The proportion of Synechococcus reads was higher in the summer than winter, and higher in coastal waters than within the estuary. Variations in the V4-V6 region of the bacterial 16S rRNA gene revealed 12 unique Synechococcus oligotypes. Two distinct communities emerged in early and late summer, each comprising a different set of statistically co-occurring Synechococcus oligotypes from different clades. The early summer community included clades I and IV, which correlated with lower temperature and higher dissolved oxygen levels. The late summer community included clades CB5, I, IV, and VI, which correlated with higher temperatures and higher salinity levels. Four rare oligotypes occurred in the late summer community, and their relative abundances more strongly correlated with high salinity than did other co-occurring oligotypes. The analysis revealed that multiple, closely related oligotypes comprised certain abundant clades (e.g., clade 1 in the early summer and clade CB5 in the late summer), but the correlations between these oligotypes varied from pair to pair, suggesting they had slightly different niches despite being closely related at the clade level. Lack of tidal water exchange between sampling stations gave rise to a unique oligotype not abundant at other locations in the estuary, suggesting physical isolation plays a role in generating additional microdiversity within the community. Together, these results contribute to our understanding of the environmental and ecological factors that influence patterns of Synechococcus microbial community composition over space and time in salt marsh estuarine waters.

12.
Nat Commun ; 8: 15325, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28524851

ABSTRACT

Rebuilding depleted fish stocks is an international policy goal and a 2020 Aichi target under the Convention on Biological Diversity. However, stock productivity may shift with future climate change, with unknown consequences for sustainable harvesting, biomass targets and recovery timelines. Here we develop a stochastic modelling framework to characterize variability in the intrinsic productivity parameter (r) and carrying capacity (K) for 276 global fish stocks worldwide. We use models of dynamic stock productivity fitted via Bayesian inference to forecast rebuilding timelines for depleted stocks. In scenarios without fishing, recovery probabilities are reduced by 19%, on average, relative to models assuming static productivity. Fishing at 90% of the maximum sustainable rate depresses recovery probabilities by 42%, on average, relative to static models. This work reveals how a changing environmental context can delay the rebuilding of depleted fish stocks, and provides a framework to account for the potential impacts of environmental change on the productivity of wildlife populations more broadly.


Subject(s)
Biomass , Fisheries , Fishes/physiology , Animals , Bayes Theorem , Biodiversity , Climate Change , Conservation of Natural Resources , Environment , Population Dynamics , Probability , Stochastic Processes , Time Factors
14.
Proc Natl Acad Sci U S A ; 113(1): 134-9, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26668368

ABSTRACT

Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans.


Subject(s)
Climate Change , Fisheries/methods , Fishes/growth & development , Animals , Biomass , Chlorophyll/metabolism , Life Cycle Stages , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Population Dynamics
15.
Science ; 346(6206): 241-4, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25278504

ABSTRACT

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related "Aichi Targets" to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress.


Subject(s)
Biodiversity , Conservation of Natural Resources , Extinction, Biological
16.
Ecol Lett ; 17(12): 1518-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224645

ABSTRACT

Fisheries exploitation has caused widespread declines in marine predators. Theory predicts that predator depletion will destabilise lower trophic levels, making natural communities more vulnerable to environmental perturbations. However, empirical evidence has been limited. Using a community matrix model, we empirically assessed trends in the stability of a multispecies coastal fish community over the course of predator depletion. Three indices of community stability (resistance, resilience and reactivity) revealed significantly decreasing stability concurrent with declining predator abundance. The trophically downgraded community exhibited weaker top-down control, leading to predator-release processes in lower trophic levels and increased susceptibility to perturbation. At the community level, our results suggest that high predator abundance acts as a stabilising force to the naturally stochastic and highly autocorrelated dynamics in low trophic species. These findings have important implications for the conservation and management of predators in marine ecosystems and provide empirical support for the theory of predatory control.


Subject(s)
Fishes , Food Chain , Animals , Italy , Mediterranean Sea , Models, Statistical , Predatory Behavior
17.
Ecol Lett ; 13(8): 1055-71, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20528897

ABSTRACT

Whereas many land predators disappeared before their ecological roles were studied, the decline of marine apex predators is still unfolding. Large sharks in particular have experienced rapid declines over the last decades. In this study, we review the documented changes in exploited elasmobranch communities in coastal, demersal, and pelagic habitats, and synthesize the effects of sharks on their prey and wider communities. We show that the high natural diversity and abundance of sharks is vulnerable to even light fishing pressure. The decline of large predatory sharks reduces natural mortality in a range of prey, contributing to changes in abundance, distribution, and behaviour of small elasmobranchs, marine mammals, and sea turtles that have few other predators. Through direct predation and behavioural modifications, top-down effects of sharks have led to cascading changes in some coastal ecosystems. In demersal and pelagic communities, there is increasing evidence of mesopredator release, but cascading effects are more hypothetical. Here, fishing pressure on mesopredators may mask or even reverse some ecosystem effects. In conclusion, large sharks can exert strong top-down forces with the potential to shape marine communities over large spatial and temporal scales. Yet more empirical evidence is needed to test the generality of these effects throughout the ocean.


Subject(s)
Biodiversity , Sharks/physiology , Animals , Conservation of Natural Resources , Fisheries , Food Chain , Models, Biological , Oceans and Seas , Population Dynamics , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...