Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826379

ABSTRACT

Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-ß receptor-mediated signaling, both key regulators of proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFß receptor-mediated signaling. In optimized HOME0, normal human esophageal organoid formation was improved, whereas IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.

2.
Cancers (Basel) ; 15(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38136355

ABSTRACT

The microscopic species colonizing the human body, collectively referred to as the microbiome, play a crucial role in the maintenance of tissue homeostasis, immunity, and the development of disease. There is evidence to suggest associations between alterations in the microbiome and the development of head and neck squamous cell carcinomas (HNSCC). The use of two-dimensional (2D) modeling systems has made significant strides in uncovering the role of microbes in carcinogenesis; however, direct mechanistic links remain in their infancy. Patient-derived three-dimensional (3D) HNSCC organoid and organotypic models have recently been described. Compared to 2D models, 3D organoid culture systems effectively capture the genetic and epigenetic features of parent tissue in a patient-specific manner and may offer a more nuanced understanding of the role of host-microbe responses in carcinogenesis. This review provides a topical literature review assessing the current state of the field investigating the role of the microbiome in HNSCC; including in vivo and in vitro modeling methods that may be used to characterize microbiome-epithelial interactions.

3.
AJOB Empir Bioeth ; : 1-12, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962912

ABSTRACT

BACKGROUND: Over the last decade, the return of results (ROR) in precision medicine research (PMR) has become increasingly routine. Calls for individual rights to research results have extended the "duty to report" from clinically useful genetic information to traits and ancestry results. ROR has thus been reframed as inherently beneficial to research participants, without a needed focus on who benefits and how. This paper addresses this gap, particularly in the context of PMR aimed at increasing participant diversity, by providing investigator and researcher perspectives on and questions about the assumed value of ROR in PMR. METHODS: Semi-structured interviews with a purposive sample of investigators and researchers across federally funded PMR studies in three national consortia, as well as observations of study activities, focused on how PM researchers conceptualize diversity and implement inclusive practices across research stages, including navigating ROR. RESULTS: Interviewees (1) validated the value of ROR as a benefit of PMR, while others (2) questioned the benefit of clinically actionable results to individuals in the absence of sufficient resources for translating findings into health care for diverse and disadvantaged populations; (3) expressed uncertainties in applying the presumed value of ROR as a benefit for non-clinical results; and (4) and debated when the promise of the value of ROR may undermine trust in PMR, and divert efforts to return value beyond ROR. CONCLUSIONS: Conceptualizations of diversity and inclusion among PM researchers and investigators raise unique ethical questions where unexamined assumptions of the value of ROR inform study recruitment efforts to enroll minoritized and under-represented populations. A lack of consideration for resources and infrastructure necessary to translate ROR into actionable information may hinder trustworthy community-research relationships. Thus, we argue for a more intentional interrogation of ROR practices as an offer of benefit and for whom.

4.
Elife ; 112022 12 01.
Article in English | MEDLINE | ID: mdl-36454214

ABSTRACT

Amino acid (AA) metabolism in vascular endothelium is important for sprouting angiogenesis. SLC38A5 (solute carrier family 38 member 5), an AA transporter, shuttles neutral AAs across cell membrane, including glutamine, which may serve as metabolic fuel for proliferating endothelial cells (ECs) to promote angiogenesis. Here, we found that Slc38a5 is highly enriched in normal retinal vascular endothelium, and more specifically, in pathological sprouting neovessels. Slc38a5 is suppressed in retinal blood vessels from Lrp5-/- and Ndpy/- mice, both genetic models of defective retinal vascular development with Wnt signaling mutations. Additionally, Slc38a5 transcription is regulated by Wnt/ß-catenin signaling. Genetic deficiency of Slc38a5 in mice substantially delays retinal vascular development and suppresses pathological neovascularization in oxygen-induced retinopathy modeling ischemic proliferative retinopathies. Inhibition of SLC38A5 in human retinal vascular ECs impairs EC proliferation and angiogenic function, suppresses glutamine uptake, and dampens vascular endothelial growth factor receptor 2. Together these findings suggest that SLC38A5 is a new metabolic regulator of retinal angiogenesis by controlling AA nutrient uptake and homeostasis in ECs.


Subject(s)
Amino Acid Transport Systems, Neutral , Endothelial Cells , Humans , Mice , Animals , Glutamine , Vascular Endothelial Growth Factor A , Neovascularization, Pathologic/genetics , Amino Acid Transport Systems
5.
Redox Biol ; 51: 102261, 2022 05.
Article in English | MEDLINE | ID: mdl-35176707

ABSTRACT

Retinal pigment epithelium (RPE) dysfunction and atrophy occur in dry age-related macular degeneration (AMD), often leading to photoreceptor degeneration and vision loss. Accumulated oxidative stress during aging contributes to RPE dysfunction and degeneration. Here we show that the nuclear receptor REV-ERBα, a redox sensitive transcription factor, protects RPE from age-related degeneration and oxidative stress-induced damage. Genetic deficiency of REV-ERBα leads to accumulated oxidative stress, dysfunction and degeneration of RPE, and AMD-like ocular pathologies in aging mice. Loss of REV-ERBα exacerbates chemical-induced RPE damage, and pharmacological activation of REV-ERBα protects RPE from oxidative damage both in vivo and in vitro. REV-ERBα directly regulates transcription of nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream antioxidant enzymes superoxide dismutase 1 (SOD1) and catalase to counter oxidative damage. Moreover, aged mice with RPE specific knockout of REV-ERBα also exhibit accumulated oxidative stress and fundus and RPE pathologies. Together, our results suggest that REV-ERBα is a novel intrinsic protector of the RPE against age-dependent oxidative stress and a new molecular target for developing potential therapies to treat age-related retinal degeneration.


Subject(s)
Macular Degeneration , Retinal Degeneration , Animals , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1 , Oxidative Stress/physiology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism
6.
Sci Adv ; 6(35): eaba7457, 2020 08.
Article in English | MEDLINE | ID: mdl-32923627

ABSTRACT

Breakdown of the blood-retinal barrier (BRB) causes retinal edema and vision loss. We investigated the role of Wnt signaling in maintaining the BRB by limiting transcytosis. Mice lacking either the Wnt co-receptor low-density lipoprotein receptor-related protein 5 (Lrp5-/- ) or the Wnt ligand Norrin (Ndpy/- ) exhibit increased retinal vascular leakage and enhanced endothelial transcytosis. Wnt signaling directly controls the transcription of an endothelium-specific transcytosis inhibitor, major facilitator superfamily domain-containing protein 2a (MFSD2A), in a ß-catenin-dependent manner. MFSD2A overexpression reverses Wnt deficiency-induced transcytosis in endothelial cells and in retinas. Moreover, Wnt signaling mediates MFSD2A-dependent vascular endothelium transcytosis through a caveolin-1 (CAV-1)-positive caveolae pathway. In addition, levels of omega-3 fatty acids are also decreased in Wnt signaling-deficient retinas, reflecting the basic function of MFSD2A as a lipid transporter. Our findings uncovered the Wnt/ß-catenin/MFSD2A/CAV-1 axis as a key pathway governing endothelium transcytosis and inner BRB integrity.

7.
Angiogenesis ; 23(3): 385-394, 2020 08.
Article in English | MEDLINE | ID: mdl-32140799

ABSTRACT

To examine whether free fatty acid receptor 4 (FFAR4) activation can protect against choroidal neovascularization (CNV), which is a common cause of blindness, and to elucidate the mechanism underlying the inhibition, we used the mouse model of laser-induced CNV to mimic angiogenic aspects of age-related macular degeneration (AMD). Laser-induced CNV was compared between groups treated with an FFAR4 agonist or vehicle, and between FFAR4 wild-type (Ffar4+/+) and knock out (Ffar4-/-) mice on a C57BL/6J/6N background. The ex vivo choroid-sprouting assay, including primary retinal pigment epithelium (RPE) and choroid, without retina was used to investigate whether FFAR4 affects choroidal angiogenesis. Western blotting for pNF-ĸB/NF-ĸB and qRT-PCR for Il-6, Il-1ß, Tnf-α, Vegf, and Nf-ĸb were used to examine the influence of FFAR4 on inflammation, known to influence CNV. RPE isolated from Ffar4+/+ and Ffar4-/- mice were used to assess RPE contribution to inflammation. The FFAR4 agonist suppressed laser-induced CNV in C57BL/6J mice, and CNV increased in Ffar4-/- compared to Ffar4+/+ mice. We showed that the FFAR4 agonist acted through the FFAR4 receptor. The FFAR4 agonist suppressed mRNA expression of inflammation markers (Il-6, Il-1ß) via the NF-ĸB pathway in the retina, choroid, RPE complex. The FFAR4 agonist suppressed neovascularization in the choroid-sprouting ex vivo assay and FFAR4 deficiency exacerbated sprouting. Inflammation markers were increased in primary RPE cells of Ffar4-/- mice compared with Ffar4+/+ RPE. In this mouse model, the FFAR4 agonist suppressed CNV, suggesting FFAR4 to be a new molecular target to reduce pathological angiogenesis in CNV.


Subject(s)
Choroidal Neovascularization/metabolism , Choroidal Neovascularization/prevention & control , Receptors, G-Protein-Coupled/metabolism , Animals , Choroidal Neovascularization/genetics , Cytokines/genetics , Cytokines/metabolism , Male , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/genetics
8.
Int J Mol Sci ; 21(2)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963809

ABSTRACT

Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.


Subject(s)
Choroidal Neovascularization/genetics , MicroRNAs/genetics , Retinal Neovascularization/genetics , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/drug therapy , Gene Expression Regulation/drug effects , Genetic Markers/drug effects , Genetic Predisposition to Disease , Humans , MicroRNAs/drug effects , Molecular Targeted Therapy , Retinal Neovascularization/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...