Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(44): 27949-27958, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30382259

ABSTRACT

The chemical mechanisms of the OH radical, Cl-atom and O3 initiated oxidation of (Z)-CF3CH[double bond, length as m-dash]CHCl were studied at 296 ± 1 K in 10-700 Torr air of N2/O2 diluent. Cl atoms add to the [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right] double bond: 12 ± 5% to the terminal carbon and 85 ± 5% to the central carbon. In 700 Torr of air the products are CF3CHClCHO, HCOCl, CF3COCl, CF3CHO, (E)-CF3CH[double bond, length as m-dash]CHCl, CF3C(O)CHCl2, and CF3CHClCOCl. The yield of (E) isomer was dependent on total pressure, but independent of O2 partial pressure; consistent with isomerization occurring via Cl atom elimination from the chemically activated rather than the thermalized CF3CHCHCl-Cl adduct. The rate constant for (Z)-CF3CH[double bond, length as m-dash]CHCl + Cl was measured at low pressure (10-15 Torr) and found to be indistinguishable from that determined at 700 Torr total pressure, whereas the low pressure rate constant for (E)-CF3CH[double bond, length as m-dash]CHCl was 36% smaller. G4MP2 ab initio calculations showed that the (E) isomer is 1.2 kcal mol-1 more stable than the (Z) isomer. Cl atom elimination from the adduct will preferentially form the (E) isomer and hence the rate of CF3CH[double bond, length as m-dash]CHCl loss will be more sensitive to pressure for the (Z) than the (E) isomer. Reaction of (Z)-CF3CH[double bond, length as m-dash]CHCl with OH radicals gives CF3CHO, HCOCl, (E)-CF3CH[double bond, length as m-dash]CHCl, and HCl. A significant chlorine atom elimination channel was observed experimentally, and supported by computational results. The oxidation products of the reaction of O3 with (Z)- and (E)-CF3CH[double bond, length as m-dash]CHCl were determined with no evidence of isomerization. The results are discussed with respect to the atmospheric chemistry and environmental impact of (Z)- and (E)-CF3CH[double bond, length as m-dash]CHCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...