Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Front Plant Sci ; 15: 1323665, 2024.
Article in English | MEDLINE | ID: mdl-38469326

ABSTRACT

Climate change is expected to increase soil salinity and heat-wave intensity, duration, and frequency. These stresses, often present in combination, threaten food security as most common crops do not tolerate them. The African eggplant (Solanum aethiopicum L.) is a nutritious traditional crop found in sub-Saharan Africa and adapted to local environments. Its wider use is, however, hindered by the lack of research on its tolerance. This project aimed to describe the effects of salinity (100 mM NaCl solution) combined with elevated temperatures (27/21°C, 37/31°C, and 42/36°C). High temperatures reduced leaf biomass while cell membrane stability was reduced by salinity. Chlorophyll levels were boosted by salinity only at the start of the stress with only the different temperatures significantly impacted the levels at the end of the experiment. Other fluorescence parameters such as maximum quantum yield and non-photochemical quenching were only affected by the temperature change. Total antioxidants were unchanged by either stress despite a decrease of phenols at the highest temperature. Leaf sodium concentration was highly increased by salinity but phosphorus and calcium were unchanged by this stress. These findings shed new light on the tolerance mechanisms of the African eggplant under salinity and heat. Further research on later developmental stages is needed to understand its potential in the field in areas affected by these abiotic stresses.

2.
Front Nutr ; 11: 1288748, 2024.
Article in English | MEDLINE | ID: mdl-38385014

ABSTRACT

Introduction: The current study investigated the value of urine selenium (Se) concentration as a biomarker of population Se status in rural sub-Saharan Africa. Method: Urine and plasma Se concentrations were measured among children aged 6-59 months (n = 608) and women of reproductive age (WRA, n = 781) living in rural Zimbabwe (Murehwa, Shamva, and Mutasa districts) and participating in a pilot national micronutrient survey. Selenium concentrations were measured by inductively coupled plasma-mass spectrometry (ICP-MS), and urine concentrations were corrected for hydration status. Results: The median (Q1, Q3) urine Se concentrations were 8.4 µg/L (5.3, 13.5) and 10.5 µg/L (6.5, 15.2) in children and WRA, respectively. There was moderate evidence for a relationship between urine Se concentration and plasma Se concentration in children (p = 0.0236) and WRA (p = < 0.0001), but the relationship had poor predictive value. Using previously defined thresholds for optimal activity of iodothyronine deiodinase (IDI), there was an association between deficiency when indicated by plasma Se concentrations and urine Se concentrations among WRA, but not among children. Discussion: Urine Se concentration poorly predicted plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status in this context. Further research is warranted at wider spatial scales to determine the value of urine Se as a biomarker when there is greater heterogeneity in Se exposure.

3.
Adv Nutr ; 15(3): 100181, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280724

ABSTRACT

Through diverse roles, zinc determines a greater number of critical life functions than any other single micronutrient. Beyond the well-recognized importance of zinc for child growth and resistance to infections, zinc has numerous specific roles covering the regulation of glucose metabolism, and growing evidence links zinc deficiency with increased risk of diabetes and cardiometabolic disorders. Zinc nutriture is, thus, vitally important to health across the life course. Zinc deficiency is also one of the most common forms of micronutrient malnutrition globally. A clearer estimate of the burden of health disparity attributable to zinc deficiency in adulthood and later life emerges when accounting for its contribution to global elevated fasting blood glucose and related noncommunicable diseases (NCDs). Yet progress attenuating its prevalence has been limited due, in part, to the lack of sensitive and specific methods to assess human zinc status. This narrative review covers recent developments in our understanding of zinc's role in health, the impact of the changing climate and global context on zinc intake, novel functional biomarkers showing promise for monitoring population-level interventions, and solutions for improving population zinc intake. It aims to spur on implementation of evidence-based interventions for preventing and controlling zinc deficiency across the life course. Increasing zinc intake and combating global zinc deficiency requires context-specific strategies and a combination of complementary, evidence-based interventions, including supplementation, food fortification, and food and agricultural solutions such as biofortification, alongside efforts to improve zinc bioavailability. Enhancing dietary zinc content and bioavailability through zinc biofortification is an inclusive nutrition solution that can benefit the most vulnerable individuals and populations affected by inadequate diets to the greatest extent.


Subject(s)
Malnutrition , Trace Elements , Child , Humans , Food, Fortified , Nutritional Status , Zinc , Micronutrients
4.
Sci Rep ; 14(1): 460, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172143

ABSTRACT

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Subject(s)
Eleusine , Selenium , Humans , Eleusine/genetics , Ethiopia , Nutritive Value , Oxalates , Phytic Acid/analysis , Selenium/analysis , Tannins/analysis
5.
Front Nutr ; 10: 1250002, 2023.
Article in English | MEDLINE | ID: mdl-37908299

ABSTRACT

Introduction: There is spatial variability of selenium (Se) in soil and crops in Ethiopia. We assessed the Se content of food items, breast milk, and urine among infants in Ethiopia from two areas with contrasting Se concentrations in soils. Methods: Dietary Se intakes among children (6-23 months) were evaluated using a weighed food record on two non-consecutive days. Also, spot urine samples from children and breast milk samples from their mothers were collected to determine Se concentration. Selenium concentrations in the samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). Results: Injera (prepared from teff and mixtures of other cereals) with a legume-based stew were the most frequently consumed foods by the children in both areas, followed by pasta. Overall, the Se concentration (mean ± SD) of food items, breast milk (12.2 ± 3.9 µg/L vs. 3.39 ± 1.5 µg/L), and urine samples (22.5 ± 11.5 µg/L vs. 3.0 ± 1.9 µg/L) from East Amhara were significantly higher than the corresponding samples from West Amhara (p < 0.001). The total Se intakes by the study children from East Amhara and West Amhara were 30.2 [IQ 25%, 14.2; IQ 75%, 54.1] and 7.4 [IQR 25%, 4.2; IQ 75%, 10.6] µg day-1, respectively; 31.5% of children from East Amhara and 92% of children from West Amhara were at risk of inadequate Se intakes. Urinary Se excretion accounted for 53 and 39% of daily dietary Se intake in East Amhara and West Amhara, respectively. Dietary Se intake was positively correlated with urinary Se excretion in East Amhara (r = 0.56; p < 0.001) but not among samples from West Amhara (r = 0.16; p ≥ 0.05), suggesting greater physiological Se conservation in a state of deficiency. Conclusion: There is spatial variability of Se in foods, breast milk, and urine in Ethiopia, suggesting the need for implementation of targeted agronomic interventions that enhance Se concentrations in the edible portion of plant foods.

6.
Br J Nutr ; 130(12): 2123-2135, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37424305

ABSTRACT

Anaemia is characterised by low hemoglobin (Hb) concentration. Despite being a public health concern in Ethiopia, the role of micronutrients and non-nutritional factors as a determinant of Hb concentrations has been inadequately explored. This study focused on the assessment of serum micronutrient and Hb concentrations and a range of non-nutritional factors, to evaluate their associations with the risk of anaemia among the Ethiopian population (n 2046). It also explored the mediation effect of Zn on the relation between se and Hb. Bivariate and multivariate regression analyses were performed to identify the relationship between serum micronutrients concentration, inflammation biomarkers, nutritional status, presence of parasitic infection and socio-demographic factors with Hb concentration (n 2046). Sobel-Goodman test was applied to investigate the mediation of Zn on relations between serum se and Hb. In total, 18·6 % of participants were anaemic, 5·8 % had iron deficiency (ID), 2·6 % had ID anaemia and 0·6 % had tissue ID. Younger age, household head illiteracy and low serum concentrations of ferritin, Co, Cu and folate were associated with anaemia. Serum se had an indirect effect that was mediated by Zn, with a significant effect of se on Zn (P < 0·001) and Zn on Hb (P < 0·001). The findings of this study suggest the need for designing a multi-sectorial intervention to address anaemia based on demographic group.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Humans , Micronutrients , Anemia/epidemiology , Anemia/etiology , Anemia, Iron-Deficiency/epidemiology , Nutritional Status , Hemoglobins/analysis , Prevalence
7.
Front Nutr ; 10: 1078667, 2023.
Article in English | MEDLINE | ID: mdl-37502724

ABSTRACT

Regenerative Agriculture (RA) is used to describe nature-based agronomic approaches that aim to build soil health and crop resilience, minimize negative environmental outcomes, and improve farmer livelihoods. A benefit that is increasingly attributed to crops grown under RA practices is improved nutritional content. However, we do not know the extent to which RA influences crop nutritional quality and under what management approaches and context, can such effects be realized. A scoping review of recent literature (Web of Science, 2000-2021) was carried out to assess the evidence that RA approaches improve crop micronutrient quality. Papers included combinations of agronomic approaches that could be defined as Regenerative: "Organic Inputs" including composts and manures, cover crops, crop rotations, crop residues and biochars; "Reduced Tillage", "Intercropping", "Biostimulants" e.g. arbuscular mycorrhizal fungi; plant growth promoting bacteria, and "Irrigation", typically deficit-irrigation and alternate wetting and drying. The crop types reviewed were predetermined covering common sources of food and included: Tomato (Solanum lycopersicum L.), Wheat (Triticum aestivum L.), Rice (Oryza sativa L.), Maize (Zea mays L.), Pulses (Fabaceae), Alliums (Allium spp.), and "other" crop types (30 types). This scoping review supports a potential role for RA approaches in increasing the concentrations of micronutrients in the edible portions of several crop types under specific practices, although this was context specific. For example, rice grown under increased organic inputs showed significant increases in grain zinc (Zn) concentration in 15 out of 16 studies. The vitamin C concentration of tomato fruit increased in ~50% of studies when plants were grown under increased organic inputs, and in 76% of studies when plants were grown under deficit irrigation. Overall, the magnitude and reproducibility of the effects of RA practices on most crop nutritional profiles were difficult to assess due to the diversity of RA approaches, geographical conditions, and the limited number of studies for most crops in each of these categories. Future research with appropriate designs, improved on-farm surveillance and nutritional diagnostics are needed for better understanding the potential role of RA in improving the quality of food, human nutrition, and health.

8.
Front Nutr ; 10: 1235113, 2023.
Article in English | MEDLINE | ID: mdl-37497053

ABSTRACT

Introduction: Selenium (Se) deficiency is increasingly recognized as a public health problem in sub-Saharan Africa. Methods: The current cross-sectional study assessed the prevalence and geospatial patterns of Se deficiency among children aged 6-59 months (n = 741) and women of 15-49 years old (n = 831) selected by simple random sampling in rural Zimbabwe (Murewa, Shamva, and Mutasa districts). Venous blood samples were collected and stored according to World Health Organization guidelines. Plasma Se concentration was determined by inductively coupled plasma-mass spectrometry. Results: Median, Q1, and Q3 plasma Se concentrations were 61.2, 48.7, and 73.3 µg/L for women and 40.5, 31.3, and 49.5 µg/L for children, respectively. Low plasma Se concentrations (9.41 µg/L in children and 10.20 µg/L in women) indicative of severe Se deficiency risk was observed. Overall, 94.6% of children and 69.8% of women had sub-optimal Se status defined by plasma Se concentrations of <64.8 µg/L and <70 µg/L, respectively. Discussion: High and widespread Se deficiency among women and children in the three districts is of public health concern and might be prevalent in other rural districts in Zimbabwe. Geostatistical analysis by conditional kriging showed a high risk of Se deficiency and that the Se status in women and children in Murewa, Shamva, and Mutasa districts was driven by short-range variations of up to ⁓12 km. Selenium status was homogenous within each district. However, there was substantial inter-district variation, indicative of marked spatial patterns if the sampling area is scaled up. A nationwide survey that explores the extent and spatial distribution of Se deficiency is warranted.

9.
Front Nutr ; 10: 1159833, 2023.
Article in English | MEDLINE | ID: mdl-37215208

ABSTRACT

Background: Food crop micronutrient concentrations can be enhanced through agronomic biofortification, with the potential to reduce micronutrient deficiencies among rural population if they have access to fertilizers. Here we reported the impact of agronomic biofortification on finger millet grain zinc (Zn) and iron (Fe) concentration. Methods: A field experiment was conducted in farmers' fields in Ethiopia in two locations; over two seasons in one district (2019 and 2020), and over a single season (2019) in a second district. The experimental design had 15 treatment combinations comprising 3 finger millet varieties and 5 soil-applied fertilizer treatments: (T1) 20 kg ha-1 FeSO4 + 25 kg ha-1 ZnSO4 + NPKS; (T2) 25 kg ha-1 ZnSO4 + NPKS; (T3) NPKS; (T4) 30% NPKS; (T5) 20 kg ha-1 FeSO4 + NPKS. The treatments were studied at two slope positions (foot and hill), replicated four times in a randomized complete block design. Results: Grain Zn concentration increased by 20% in response to Fe and Zn and by 18.9% due to Zn addition. Similarly, grain Fe concentration increased by 21.4% in T1 and 17.8% in T5 (Fe). Zinc fertilizer application (p < 0.001), finger millet variety (p < 0.001), and an interaction of Fe and Zn had significant effect on grain Zn concentration. Iron fertilizer (p < 0.001) and interactive effect of Fe fertilizer and finger millet variety (p < 0.01) had significant effects on grain Fe concentration. Location but not slope position was a source of variation for both grain Zn and Fe concentrations. Conclusion: Soil application of Zn and Fe could be a viable strategy to enhance grain Zn and Fe concentration to finger millet grain. If increased grain Zn and Fe is bioavailable, it could help to combat micronutrient deficiencies.

10.
Food Sci Nutr ; 11(3): 1232-1246, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911837

ABSTRACT

Globally, anemia is a public health problem affecting mostly women of reproductive age (WRA, n = 452) and children aged 6-59 months (n = 452) from low- and lower-middle-income countries. This cross-sectional study assessed the prevalence and determinants of anemia in WRA and children aged 6-59 months in rural Zimbabwe. The venous blood sample was measured for hemoglobin utilizing a HemoCue machine. Anthropometric indices were assessed and classified based on World Health Organization standards. Socioeconomic characteristics were assessed. The median (±inter quartile range (IQR)) age of WRA was 29 ± 12 years and that for children was 29 ± 14 months. The prevalence of anemia was 29.6% and 17.9% in children and WRA, respectively, while the median (±IQR) hemoglobin levels were 13.4 ± 1.8 and 11.7 ± 1.5 g/dl among women and children, respectively. Multiple logistic regression analysis was used to assess determinants of anemia. Anemia in children was significantly associated with maternal anemia (odds ratio (OR) = 2.02; 95% CI 1.21-3.37; p = .007) and being a boy (OR = 0.63; 95% CI 0.41-0.95; p = .029), while anemia in WRA was significantly associated with the use of unimproved dug wells as a source of drinking water (OR = 0.36; 95% CI 0.20-0.66; p = .001) and lack of agricultural land ownership (OR = 0.51; 95% CI 0.31-0.85; p = .009). Anemia is a public health problem in the study setting. The positive association between maternal and child anemia reflects the possibility of cross-generational anemia. Therefore, interventions that focus on improving preconceptual and maternal nutritional status may help to reduce anemia in low-income settings.

11.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222573

ABSTRACT

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Subject(s)
Climate Change , Ecosystem , Humans , Crops, Agricultural , Carbon , Droughts
12.
Food Chem ; 402: 134277, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137379

ABSTRACT

A controlled in-vitro experiment was conducted to determine the bioaccessibility of extrinsic soil iron in pearl millet contaminated with typical Malawian soils. Pearl millet was contaminated with soils at ratios typically encountered in real life. Iron concentrations of soil-contaminated flour increased such that soil-derived iron contributed 56, 83 and 91% of the total iron when the proportions of soil were 0.1, 0.5 and 1% (soil: grain w/w), respectively. When soils were digested alone, the concentration of bioaccessible iron differed depending on the type of soil. However, the concentration of bioaccessible iron in soil-contaminated flours did not exceed that of uncontaminated flour and there was no effect of soil type. This suggests that knowledge of the proportion of extrinsic soil iron in soil-contaminated grains would be useful for iron bioavailability estimations. Vanadium is a reliable indicator of the presence of extrinsic soil iron in grains and has potential applications in this regard.


Subject(s)
Pennisetum , Soil Pollutants , Flour/analysis , Iron/analysis , Soil , Vanadium , Soil Pollutants/analysis
13.
Plant Direct ; 6(11): e458, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348768

ABSTRACT

Zinc (Zn) deficiency remains a public health problem in Malawi, especially among poor and marginalized rural populations, linked with low dietary intake of Zn due to consumption of staple foods that are low in Zn content. The concentration of Zn in staple cereal grain can be increased through application of Zn-enriched fertilizers, a process called agronomic biofortification or agro-fortification. Field experiments were conducted at three Agricultural Research Station sites to assess the potential of agronomic biofortification to improve Zn concentration in maize grain in Malawi as described in registered report published previously. The hypotheses of the study were (i) that application of Zn-enriched fertilizers would increase in the concentration of Zn in maize grain to benefit dietary requirements of Zn and (ii) that Zn concentration in maize grain and the effectiveness of agronomic biofortification would be different between soil types. At each site two different subsites were used, each corresponding to one of two agriculturally important soil types of Malawi, Lixisols and Vertisols. Within each subsite, three Zn fertilizer rates (1, 30, and 90 kg ha-1) were applied to experimental plots, using standard soil application methods, in a randomized complete block design. The experiment had 10 replicates at each of the three sites as informed by a power analysis from a pilot study, published in the registered report for this experiment, designed to detect a 10% increase in grain Zn concentration at 90 kg ha-1, relative to the concentration at 1 kg ha-1. At harvest, maize grain yield and Zn concentration in grain were measured, and Zn uptake by maize grain and Zn harvest index were calculated. At 30 kg ha-1, Zn fertilizer increased maize grain yields by 11% compared with nationally recommended application rate of 1 kg ha-1. Grain Zn concentration increased by 15% and uptake by 23% at the application rate of 30 kg ha-1 relative to the national recommendation rate. The effects of Zn fertilizer application rate on the response variables were not dependent on soil type. The current study demonstrates the importance of increasing the national recommendation rate of Zn fertilizer to improve maize yield and increase the Zn nutritional value of the staple crop.

14.
Front Nutr ; 9: 1037161, 2022.
Article in English | MEDLINE | ID: mdl-36438724

ABSTRACT

Background: Inadequate dietary zinc (Zn) supplies and Zn deficiency (ZnD) are prevalent in Ethiopia, where cereals are major dietary sources, yet low in bioavailable Zn. Zinc agronomic biofortification (ZAB) of staple crops through application of Zn fertilizers may contribute to alleviating ZnD. However, large-scale promotion and adoption of ZAB requires evidence of the feasibility and public health benefits. This paper aimed to quantify the potential cost-effectiveness of ZAB of staple crops for alleviating ZnD in Ethiopia. Methods: Current burden of ZnD among children in Ethiopia was quantified using a disability-adjusted life years (DALYs) framework. Evidence on baseline dietary Zn intake, cereal consumption, and fertilizer response ratio was compiled from existing literature and secondary data sources. Reduction in the burden of ZnD attributable to ZAB of three staple cereals (maize, teff, and wheat) via granular and foliar Zn fertilizer applications was calculated under optimistic and pessimistic scenarios. The associated costs for fertilizer, labor, and equipment were estimated in proportion to the cropping area and compared against DALYs saved and the national Gross Domestic Product capita-1. Results: An estimated 0.55 million DALYs are lost annually due to ZnD, mainly due to ZnD-related mortality (91%). The ZAB of staple cereals via granular Zn fertilizer could reduce the burden of ZnD by 29 and 38% under pessimistic and optimistic scenarios, respectively; the respective values for ZAB via foliar application were 32 and 40%. The ZAB of staple cereals via granular fertilizer costs US$502 and US$505 to avert each DALY lost under optimistic and pessimistic scenarios, respectively; the respective values for ZAB via foliar application were US$226 and US$ 496. Foliar Zn application in combination with existing pesticide use could reduce costs to US$260-353 for each DALY saved. Overall, ZAB of teff and wheat were found to be more cost-effective in addressing ZnD compared to maize, which is less responsive to Zn fertilizer. Conclusion: ZAB of staple crops via granular or foliar applications could be a cost-effective strategy to address ZnD, which can be integrated with the existing fertilizer scheme and pesticide use to minimize the associated costs.

15.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079728

ABSTRACT

Recent surveys have revealed substantial spatial variation in the micronutrient composition of cereals in Ethiopia, where a single national micronutrient concentration values for cereal grains are of limited use for estimating typical micronutrient intakes. We estimated the district-level dietary mineral supply of staple cereals, combining district-level cereal production and crop mineral composition data, assuming cereal consumption of 300 g capita-1 day-1 proportional to district-level production quantity of each cereal. We considered Barley (Hordeum vulgare L.), maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), teff (Eragrostis tef (Zuccagni) Trotter), and wheat (Triticum aestivum L.) consumption representing 93.5% of the total cereal production in the three major agrarian regions. On average, grain cereals can supply 146, 23, and 7.1 mg capita-1 day-1 of Ca, Fe, and Zn, respectively. In addition, the Se supply was 25 µg capita-1 day-1. Even at district-level, cereals differ by their mineral composition, causing a wide range of variation in their contribution to the daily dietary requirements, i.e., for an adult woman: 1-48% of Ca, 34-724% of Fe, 17-191% of Se, and 48-95% of Zn. There was considerable variability in the dietary supply of Ca, Fe, Se, and Zn from staple cereals between districts in Ethiopia.


Subject(s)
Eragrostis , Hordeum , Sorghum , Trace Elements , Edible Grain , Ethiopia , Female , Humans , Micronutrients , Minerals , Triticum , Zea mays
16.
Front Biosci (Landmark Ed) ; 27(7): 200, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35866386

ABSTRACT

INTRODUCTION: Selenium (Se) is an essential mineral for livestock health and productivity. In cattle, Se deficiency is associated with delayed conception, growth retardation, and increased morbidity and mortality. METHODS: We conducted a survey of cattle serum (n = 224) and feed (n = 81) samples from two areas with contrasting human and cereal grain Se concentration in Ethiopia. The fodder samples include stover, straw, hay and pasture grass. Se concentration of the samples were measured using inductively coupled plasma-mass spectrometry. RESULTS: Serum Se concentration ranged from 14.9 to 167.8 µg L-1 (median, 41.4 µg L-1). Cattle from East Amhara had significantly greater serum Se concentration compared to cattle from West Amhara (median: 68.4 µg L-1 vs 25.7 µg L-1; p < 0.001). Overall, 79.8% of cattle had Se deficiency (<81 µg L-1). All of the cattle from West Amhara were Se deficient compared with 62.5% of those from East Amhara. State of lactation of cows or age of cattle was not associated with serum Se concentration. The Se concentrations of feed samples ranged from 0.05 to 269.3 µg kg-1. Feed samples from East Amhara had greater Se concentration than samples from West Amhara. Cow serum and cattle feed Se concentrations showed strong spatially correlated variation, with a strong trend from East to West Amhara. CONCLUSIONS: This study shows that cattle Se deficiency is likely to be highly prevalent in Ethiopia, which will negatively affect the health and productivity of livestock. The deficiency appears to be geographical dependent. More extensive surveys to map Se concentration in soil-feed-livestock-human cycle are required in Ethiopia and elsewhere.


Subject(s)
Selenium , Animal Feed/analysis , Ethiopia , Female , Humans , Selenium/analysis
17.
Nutrients ; 14(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35745160

ABSTRACT

We estimated dietary supplies of total and available protein and indispensable amino acids (IAAs) and predicted the risk of deficiency in Malawi using Household Consumption and Expenditure Survey data. More than half of dietary protein was derived from cereal crops, while animal products provided only 11%. The supply of IAAs followed similar patterns to that of total proteins. In general, median protein and IAA supplies were reduced by approximately 17% after accounting for digestibility, with higher losses evident among the poorest households. At population level, 20% of households were at risk of protein deficiency due to inadequate available protein supplies. Of concern was lysine supply, which was inadequate for 33% of households at the population level and for the majority of the poorest households. The adoption of quality protein maize (QPM) has the potential to reduce the risk of protein and lysine deficiency in the most vulnerable households by up to 12% and 21%, respectively.


Subject(s)
Family Characteristics , Lysine , Animals , Diet, Protein-Restricted , Dietary Proteins/metabolism , Humans , Lysine/metabolism , Malawi/epidemiology
19.
Nutrients ; 14(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35458222

ABSTRACT

Biofortification of wheat is potentially a sustainable strategy to improve zinc intake; however, evidence of its effectiveness is needed. A household-based, double-blind, cluster-randomized controlled trial (RCT) was conducted in rural Pakistan. The primary objective was to examine the effects of consuming zinc-biofortified wheat flour on the zinc status of adolescent girls aged 10−16 years (n = 517). Households received either zinc-biofortified flour or control flour for 25 weeks; blood samples and 24-h dietary recalls were collected for mineral status and zinc intake assessment. Plasma concentrations of zinc (PZC), selenium and copper were measured via inductively coupled plasma mass spectrometry and serum ferritin (SF), transferrin receptor, alpha 1-acid glycoprotein and C-reactive protein by immunoassay. Consumption of the zinc-biofortified flour resulted in a moderate increase in intakes of zinc (1.5 mg/day) and iron (1.2 mg/day). This had no significant effect on PZC (control 641.6 ± 95.3 µg/L vs. intervention 643.8 ± 106.2 µg/L; p = 0.455), however there was an overall reduction in the rate of storage iron deficiency (SF < 15 µg/L; control 11.8% vs. 1.0% intervention). Consumption of zinc-biofortified flour increased zinc intake (21%) but was not associated with an increase in PZC. Establishing a sensitive biomarker of zinc status is an ongoing priority.


Subject(s)
Flour , Zinc , Adolescent , Female , Flour/analysis , Food, Fortified , Humans , Iron/analysis , Pakistan
20.
Sci Total Environ ; 828: 154426, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278548

ABSTRACT

The Amazon rainforest is a heterogeneous ecosystem and its soils exhibit geographically variable concentrations of trace elements. In this region, anthropic activities - e.g., agriculture and mining - are numerous and varied, and even natural areas are at risk of contamination by trace elements, either of geogenic or anthropogenic origin. A reliable dataset of benchmark values for selenium (Se), barium (Ba), and iodine (I) concentrations in soils is needed for use as a reference in research and public policies in the region. In this study, 9 selected sites in the Brazilian Amazon rainforest within areas represented by Oxisols and Ultisols were assessed for relevant soil physicochemical characteristics, along with the concentrations of total Se (SeTot), total Ba (BaTot), and sequentially-extracted soluble Se (SeSol) and adsorbed Se (SeAd) in 3 different soil layers (0-20, 20-40, and 40-60 cm). In addition, organically bound-Se (SeOrg) and total I (ITot) concentrations in the surface layer (0-20 cm) were measured. Soil Se concentrations (SeTot) were considered safe and are likely a result of contributions of sedimentary deposits from the Andes. Available Se (SeSol + SeAd) accounted for 4.5% of SeTot, on average, while SeOrg in the topsoil accounted for more than 50% of SeTot. Barium in the western Amazon (state of Acre) and central Amazon (Anori, state of Amazonas) exceeded national prevention levels (PVs). Furthermore, the average ITot in the studied topsoils (5.4 mg kg-1) surpassed the worldwide mean. Notwithstanding, the close relationship found between the total content of the elements (Se, Ba, and I) and soil texture (clay, silt, and sand) suggests their geogenic source. Finally, our data regarding SeTot, BaTot, and ITot can be used to derive regional quality reference values for Amazon soils and also for updating prevention (PV) and investigation (IV) values established for selected elements by the Brazilian legislation.


Subject(s)
Iodine , Selenium , Soil Pollutants , Trace Elements , Barium , Brazil , Ecosystem , Environmental Monitoring , Iodides , Rainforest , Selenium/analysis , Soil/chemistry , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...