Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Neurosci ; 18: 1258996, 2024.
Article in English | MEDLINE | ID: mdl-38469573

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion: Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

2.
Alzheimers Dement (Amst) ; 15(4): e12482, 2023.
Article in English | MEDLINE | ID: mdl-37780862

ABSTRACT

Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.

3.
Alzheimers Res Ther ; 15(1): 146, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649099

ABSTRACT

INTRODUCTION: Polygenic Risk Scores (PRSs) are summaries of genetic risk alleles for an outcome. METHODS: We used summary statistics from five GWASs of AD to construct PRSs in 4,189 diverse Hispanics/Latinos (mean age 63 years) from the Study of Latinos-Investigation of Neurocognitive Aging (SOL-INCA). We assessed the PRS associations with MCI in the combined set of people and in diverse subgroups, and when including and excluding the APOE gene region. We also assessed PRS associations with MCI in an independent dataset from the Mass General Brigham Biobank. RESULTS: A simple sum of 5 PRSs ("PRSsum"), each constructed based on a different AD GWAS, was associated with MCI (OR = 1.28, 95% CI [1.14, 1.41]) in a model adjusted for counts of the APOE-[Formula: see text] and APOE-[Formula: see text] alleles. Associations of single-GWAS PRSs were weaker. When removing SNPs from the APOE region from the PRSs, the association of PRSsum with MCI was weaker (OR = 1.17, 95% CI [1.04,1.31] with adjustment for APOE alleles). In all association analyses, APOE-[Formula: see text] and APOE-[Formula: see text] alleles were not associated with MCI. DISCUSSION: A sum of AD PRSs is associated with MCI in Hispanic/Latino older adults. Despite no association of APOE-[Formula: see text] and APOE-[Formula: see text] alleles with MCI, the association of the AD PRS with MCI is stronger when including the APOE region. Thus, APOE variants different than the classic APOE alleles may be important predictors of MCI in Hispanic/Latino adults.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Cognitive Dysfunction , Aged , Humans , Middle Aged , Alleles , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Hispanic or Latino/genetics , Risk Factors
4.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37503230

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions: Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

5.
Alzheimers Dement ; 19(12): 5817-5836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37270665

ABSTRACT

Frontotemporal dementia (FTD) is one of the leading causes of dementia before age 65 and often manifests as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). FTD's exact clinical presentation varies by culture, language, education, social norms, and other socioeconomic factors; current research and clinical practice, however, is mainly based on studies conducted in North America and Western Europe. Changes in diagnostic criteria and procedures as well as new or adapted cognitive tests are likely needed to take into consideration global diversity. This perspective paper by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment examines how increasing global diversity impacts the clinical presentation, screening, assessment, and diagnosis of FTD and its treatment and care. It subsequently provides recommendations to address immediate needs to advance global FTD research and clinical practice.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Aged , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/therapy , Frontotemporal Dementia/psychology , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Neuropsychological Tests , Language , Europe
6.
Alzheimers Dement ; 19(11): 5151-5158, 2023 11.
Article in English | MEDLINE | ID: mdl-37132098

ABSTRACT

INTRODUCTION: There is a pressing need for non-invasive, cost-effective tools for early detection of Alzheimer's disease (AD). METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS. RESULTS: The MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau. DISCUSSION: The MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment. HIGHLIGHTS: A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology , Cognition , Atrophy/pathology , Disease Progression
7.
Ann Clin Transl Neurol ; 10(4): 536-552, 2023 04.
Article in English | MEDLINE | ID: mdl-36744645

ABSTRACT

OBJECTIVE: We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS: We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS: Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION: These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Adult , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Brain/diagnostic imaging , Brain/pathology , Prion Proteins/genetics
8.
Alzheimers Dement ; 19(7): 3078-3086, 2023 07.
Article in English | MEDLINE | ID: mdl-36701211

ABSTRACT

INTRODUCTION: Identifying individuals who are most likely to accumulate tau and exhibit cognitive decline is critical for Alzheimer's disease (AD) clinical trials. METHODS: Participants (N = 235) who were cognitively normal or with mild cognitive impairment from the Alzheimer's Disease Neuroimaging Initiative were stratified by a cutoff on the polygenic hazard score (PHS) at 65th percentile (above as high-risk group and below as low-risk group). We evaluated the associations between the PHS risk groups and tau positron emission tomography and cognitive decline, respectively. Power analyses estimated the sample size needed for clinical trials to detect differences in tau accumulation or cognitive change. RESULTS: The high-risk group showed faster tau accumulation and cognitive decline. Clinical trials using the high-risk group would require a fraction of the sample size as trials without this inclusion criterion. DISCUSSION: Incorporating a PHS inclusion criterion represents a low-cost and accessible way to identify potential participants for AD clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , tau Proteins/genetics , tau Proteins/metabolism , Brain/metabolism , Biomarkers , Positron-Emission Tomography , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognition , Amyloid beta-Peptides
9.
Neurol Genet ; 8(6): e200043, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36530928

ABSTRACT

Background and Objectives: Important sex differences exist in tau pathology along the Alzheimer disease (AD) continuum, with women showing enhanced tau deposition compared with men, especially during the mild cognitive impairment (MCI) phase. This study aims to identify specific genetic variants associated with sex differences in regional tau aggregation, as measured with PET. Methods: Four hundred ninety-three participants (women, n = 246; men, n = 247) who self-identified as White from the AD Neuroimaging Initiative study, with genotyping data and 18F-Flortaucipir tau PET data, were included irrespective of clinical diagnosis (cognitively normal [CN], MCI, and AD). We focused on the genetic variants within 10 genes previously shown to have sex-dependent effects on AD to reduce the burden of multiple comparisons: BIN1, MS4A6A, DNAJA2, FERMT2, APOC1, APOC1P1, FAM193B, C2orf47, TYW5, and CR1. Multivariate analysis of variance was applied to identify genetic variants associated with tau PET data in 3 regions of interests (composite regions of Braak I, Braak III/IV, and Braak V/VI stages) in women and men separately. We controlled for age, scanner manufacture, amyloid status, APOE ε4 carriership, diagnosis (CN vs MCI vs AD), and the first 10 genetic principal components to adjust for population stratification. Results: We identified 3 genetic loci within 3 different genes associated with tau deposits specifically in women: rs79711283 within DNAJA2, rs113357081 within FERMT2, and rs74614106 within TYW5. In men, we also identified 3 loci within CR1 associated with tau deposits: rs115096248, rs113698814, and rs78150633. Discussion: Our findings revealed sex-specific genetic variants associated with tau deposition independent of APOE ε4, amyloid status, and clinical diagnosis. These results provide potential molecular targets for understanding the mechanism of sex-specific tau aggregation and developing sex-specific gene-guided precision prevention or therapeutic interventions for AD.

10.
BMC Neurol ; 21(1): 412, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34706674

ABSTRACT

BACKGROUND: Anti-NMDA receptor encephalitis is an immune-mediated disorder characterized by antibodies against the GluN1 subunit of the NMDA receptor that is increasingly recognized as a treatable cause of childhood epileptic encephalopathy. In adults, the disorder has been associated with reversible changes in brain volume over the course of treatment and recovery, but in children, little is known about its time course and associated imaging manifestations. CASE PRESENTATION: A previously healthy 20-month-old boy presented with first-time unprovoked seizures, dysautonomia, and dyskinesia. Paraneoplastic workup was negative, but CSF was positive for anti-NMDAR antibodies. The patient's clinical condition waxed and waned over a 14-month course of treatment with first- and second-line immunotherapies (including steroids, IVIG, rituximab, and cyclophosphamide). Serial brain MRIs scans obtained at 5 time points spanning this same period showed no abnormal signal or enhancement but were remarkable for cycles of reversible regional cortical volume loss. All scans included identical 1-mm resolution 3D T1-weighted sequences obtained on the same 3 T scanner. Using a novel longitudinal processing stream in FreeSurfer6 (Reuter M, et. al, Neuroimage 61:1402-18, 2012) we quantified the rate of change in cortical volume at each vertex (% volume change per month) between consecutive scans and correlated these changes with the time course of the patient's treatment and clinical response. We found regionally specific changes in cortical volume (up to 7% per month) that preferentially affected the frontal and occipital lobes and paralleled the patient's clinical course, with clinical decline associated with volume loss and clinical improvement associated with volume gain. CONCLUSIONS: Our results suggest that reversible cortical volume loss in anti-NMDA encephalitis has a regional specificity that mirrors many of the clinical symptoms associated with the disorder and tracks the dynamics of disease severity over time. This case illustrates how quantitative morphometric techniques can be applied to clinical imaging data to reveal patterns of brain change that may provide insight into disease pathophysiology. More widespread application of this approach might reveal regional and temporal patterns specific to different types of autoimmune encephalitis, providing a tool for diagnosis and a surrogate marker for monitoring treatment response.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Autoantibodies , Brain/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Male , Receptors, N-Methyl-D-Aspartate
11.
Front Neurosci ; 15: 639078, 2021.
Article in English | MEDLINE | ID: mdl-33732107

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.

12.
Biol Psychiatry ; 89(3): 227-235, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32201043

ABSTRACT

BACKGROUND: Parkinson's disease (PD) and schizophrenia (SCZ) are heritable brain disorders that involve dysregulation of the dopaminergic system. Epidemiological studies have reported potential comorbidity between the disorders, and movement disturbances are common in patients with SCZ before treatment with antipsychotic drugs. Despite this, little is known about shared genetic etiology between the disorders. METHODS: We analyzed recent large genome-wide association studies on patients with SCZ (N = 77,096) and PD (N = 417,508) using a conditional/conjunctional false discovery rate (FDR) approach to evaluate overlap in common genetic variants and improve statistical power for genetic discovery. Using a variety of biological resources, we functionally characterized the identified genomic loci. RESULTS: We observed genetic enrichment in PD conditional on associations with SCZ and vice versa, indicating polygenic overlap. We then leveraged this cross-trait enrichment using conditional FDR analysis and identified 9 novel PD risk loci and 1 novel SCZ locus at conditional FDR < .01. Furthermore, we identified 9 genomic loci jointly associated with PD and SCZ at conjunctional FDR < .05. There was an even distribution of antagonistic and agonistic effect directions among the shared loci, in line with the insignificant genetic correlation between the disorders. Of 67 genes mapped to the shared loci, 65 are expressed in the human brain and show cell type-specific expression profiles. CONCLUSIONS: Altogether, the study increases understanding of the genetic architectures underlying SCZ and PD, indicating that common molecular genetic mechanisms may contribute to overlapping pathophysiological and clinical features between the disorders.


Subject(s)
Parkinson Disease , Schizophrenia , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics
13.
Sci Rep ; 9(1): 10854, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350420

ABSTRACT

The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA's relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.


Subject(s)
Apoptosis/genetics , Gene Regulatory Networks , Polymorphism, Single Nucleotide , Primary Progressive Nonfluent Aphasia/genetics , RNA/metabolism , Cohort Studies , DNA-Binding Proteins/genetics , Databases, Genetic , Gene Expression Regulation , Genome-Wide Association Study , Humans , Protein Interaction Maps/genetics , Risk Factors , Transcription, Genetic
14.
Brain ; 142(2): 460-470, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30689776

ABSTRACT

Mounting evidence indicates that the polygenic basis of late-onset Alzheimer's disease can be harnessed to identify individuals at greatest risk for cognitive decline. We have previously developed and validated a polygenic hazard score comprising of 31 single nucleotide polymorphisms for predicting Alzheimer's disease dementia age of onset. In this study, we examined whether polygenic hazard scores are associated with: (i) regional tracer uptake using amyloid PET; (ii) regional volume loss using longitudinal MRI; (iii) post-mortem regional amyloid-ß protein and tau associated neurofibrillary tangles; and (iv) four common non-Alzheimer's pathologies. Even after accounting for APOE, we found a strong association between polygenic hazard scores and amyloid PET standard uptake volume ratio with the largest effects within frontal cortical regions in 980 older individuals across the disease spectrum, and longitudinal MRI volume loss within the entorhinal cortex in 607 older individuals across the disease spectrum. We also found that higher polygenic hazard scores were associated with greater rates of cognitive and clinical decline in 632 non-demented older individuals, even after controlling for APOE status, frontal amyloid PET and entorhinal cortex volume. In addition, the combined model that included polygenic hazard scores, frontal amyloid PET and entorhinal cortex volume resulted in a better fit compared to a model with only imaging markers. Neuropathologically, we found that polygenic hazard scores were associated with regional post-mortem amyloid load and neuronal neurofibrillary tangles, even after accounting for APOE, validating our imaging findings. Lastly, polygenic hazard scores were associated with Lewy body and cerebrovascular pathology. Beyond APOE, we show that in living subjects, polygenic hazard scores were associated with amyloid deposition and neurodegeneration in susceptible brain regions. Polygenic hazard scores may also be useful for the identification of individuals at the highest risk for developing multi-aetiological dementia.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Multifactorial Inheritance/genetics , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/genetics , Aged , Aged, 80 and over , Female , Humans , Male , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics
15.
Dev Sci ; 22(2): e12744, 2019 03.
Article in English | MEDLINE | ID: mdl-30159951

ABSTRACT

We investigated the development of a recently identified white matter pathway, the frontal aslant tract (FAT) and its association with executive function and externalizing behaviors in a sample of 129 neurotypical male and female human children ranging in age from 7 months to 19 years. We found that the FAT could be tracked in 92% of those children, and that the pathway showed age-related differences into adulthood. The change in white matter microstructure was very rapid until about 6 years, and then plateaued, only to show age-related increases again after the age of 11 years. In a subset of those children (5-18 years; n = 70), left laterality of the microstructural properties of the FAT was associated with greater attention problems as measured by the Child Behavior Checklist (CBCL). However, this relationship was fully mediated by higher executive dysfunction as measured by the Behavior Rating Inventory of Executive Function (BRIEF). This relationship was specific to the FAT-we found no relationship between laterality of a control pathway, or of the white matter of the brain in general, and attention and executive function. These findings suggest that the degree to which the developing brain favors a right lateralized structural dominance of the FAT is directly associated with executive function and attention. This novel finding provides a new potential structural biomarker to assess attention deficit hyperactivity disorder (ADHD) and associated executive dysfunction during development.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Executive Function/physiology , White Matter/ultrastructure , Adolescent , Attention/physiology , Brain/physiopathology , Brain Mapping , Child , Child, Preschool , Female , Functional Laterality , Humans , Infant , Male , Young Adult
16.
Acta Neuropathol ; 137(2): 209-226, 2019 02.
Article in English | MEDLINE | ID: mdl-30413934

ABSTRACT

Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer's disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether CV-associated genes also increase risk for AD. Using large genome-wide association studies and validated tools to quantify genetic overlap, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with AD and one or more CV-associated RFs, namely body mass index (BMI), type 2 diabetes (T2D), coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides (TG), low-density (LDL) and high-density lipoprotein (HDL). In fold enrichment plots, we observed robust genetic enrichment in AD as a function of plasma lipids (TG, TC, LDL, and HDL); we found minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond APOE, at conjunction FDR < 0.05 we identified 90 SNPs on 19 different chromosomes that were jointly associated with AD and CV-associated outcomes. In meta-analyses across three independent cohorts, we found four novel loci within MBLAC1 (chromosome 7, meta-p = 1.44 × 10-9), MINK1 (chromosome 17, meta-p = 1.98 × 10-7) and two chromosome 11 SNPs within the MTCH2/SPI1 region (closest gene = DDB2, meta-p = 7.01 × 10-7 and closest gene = MYBPC3, meta-p = 5.62 × 10-8). In a large 'AD-by-proxy' cohort from the UK Biobank, we replicated three of the four novel AD/CV pleiotropic SNPs, namely variants within MINK1, MBLAC1, and DDB2. Expression of MBLAC1, SPI1, MINK1 and DDB2 was differentially altered within postmortem AD brains. Beyond APOE, we show that the polygenic component of AD is enriched for lipid-associated RFs. We pinpoint a subset of cardiovascular-associated genes that strongly increase the risk for AD. Our collective findings support a disease model in which cardiovascular biology is integral to the development of clinical AD in a subset of individuals.


Subject(s)
Alzheimer Disease/genetics , Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Aged , Aged, 80 and over , Alleles , Apolipoproteins E/genetics , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Risk Factors
17.
Brain Cogn ; 134: 80-89, 2019 08.
Article in English | MEDLINE | ID: mdl-30580899

ABSTRACT

The development of fluent reading is an extended process that requires the recruitment of a comprehensive system of perisylvian brain regions connected by an extensive network of fiber pathways. In the present cross-sectional study, we focused on fiber pathways-the arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), and vertical occipital fasciculus (VOF)-proposed to support early literacy in typical 5-8-year-old children. We related quantitative metrics of fiber pathway microstructure in these pathways to early literacy measures of phonological awareness and decoding. We found that diffusion properties of the AF, ILF, and VOF not only show age-related differences, but also are predictive of early literacy skills after controlling for the effects of age, general white matter development, sex, IQ, and phonological skill. Perhaps most novel, we provide evidence supporting the involvement of the recently re-identified VOF in early literacy, and further, we provide evidence that a bilateral network of fiber pathways supports early literacy development.


Subject(s)
Brain/physiology , Literacy , Nerve Net/physiology , Reading , White Matter/physiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Neural Pathways/physiology
18.
Sci Rep ; 8(1): 13373, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190613

ABSTRACT

Tuberous sclerosis complex (TSC), a heritable neurodevelopmental disorder, is caused by mutations in the TSC1 or TSC2 genes. To date, there has been little work to elucidate regional TSC1 and TSC2 gene expression within the human brain, how it changes with age, and how it may influence disease. Using a publicly available microarray dataset, we found that TSC1 and TSC2 gene expression was highest within the adult neo-cerebellum and that this pattern of increased cerebellar expression was maintained throughout postnatal development. During mid-gestational fetal development, however, TSC1 and TSC2 expression was highest in the cortical plate. Using a bioinformatics approach to explore protein and genetic interactions, we confirmed extensive connections between TSC1/TSC2 and the other genes that comprise the mammalian target of rapamycin (mTOR) pathway, and show that the mTOR pathway genes with the highest connectivity are also selectively expressed within the cerebellum. Finally, compared to age-matched controls, we found increased cerebellar volumes in pediatric TSC patients without current exposure to antiepileptic drugs. Considered together, these findings suggest that the cerebellum may play a central role in TSC pathogenesis and may contribute to the cognitive impairment, including the high incidence of autism spectrum disorder, observed in the TSC population.


Subject(s)
Cerebellum/metabolism , Gene Expression Regulation, Neoplastic , Neurodevelopmental Disorders/metabolism , Tuberous Sclerosis Complex 1 Protein/biosynthesis , Tuberous Sclerosis Complex 2 Protein/biosynthesis , Tuberous Sclerosis/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cerebellum/pathology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neurodevelopmental Disorders/pathology , Tuberous Sclerosis/pathology
19.
Transl Psychiatry ; 8(1): 73, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29636460

ABSTRACT

Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases.


Subject(s)
Genetic Predisposition to Disease , Neurodegenerative Diseases/genetics , Receptors, CXCR4/genetics , Animals , Brain/metabolism , Gene Expression , Gene Regulatory Networks , Genome-Wide Association Study , Humans , Mice, Transgenic , Microglia/metabolism , Polymorphism, Single Nucleotide , Receptors, CXCR4/metabolism , Risk Factors
20.
PLoS Med ; 15(1): e1002487, 2018 01.
Article in English | MEDLINE | ID: mdl-29315334

ABSTRACT

BACKGROUND: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. METHODS AND FINDINGS: Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD-immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. CONCLUSIONS: We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD.


Subject(s)
Frontotemporal Dementia/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Aged , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...